Skip to main content
Log in

Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An amperometric nitrite sensor modified with multi-walled carbon nanotubes (MWCNTs) and poly(toluidine blue) (PTB) on glassy carbon electrode was constructed. The surface morphology of the composite- modified electrode was characterized by scanning electron microscopy, and the electrochemical response behavior and electrocatalytic oxidation mechanism of nitrite were investigated by cyclic voltammetry. The high surface-to-volume ratio of MWCNTs and PTB brings the electrochemical sensing unit and nitrite in full contact. This renders the electrochemical response extremely sensitive to nitrite. Under the optimal measurement conditions and a working voltage of 0.73 V (vs. SCE), a linear relationship is obtained between the oxidation peak current and nitrite concentration in the range of 39 nM–1.1 mM, and the limit of detection is lowered to 19 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitrite in greenhouse soils.

A glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue) is shown to be a viable amperometric nitrite sensor. It has a linear response in the 39 nM to 1.1 mM nitrite concentration range and a 19 nM detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Mey E, de Klerck K, de Maere H, Dewulf L, Derdelinckx G, Peeters MC, Fraeye I, Heyden YV, Paelinck H (2014) The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci 96:821–828

    Article  Google Scholar 

  2. Filik H, Giray D, Ceylan B, Apak R (2011) A novel fiber optic spectrophotometric determination of nitrite using safranin O and cloud point extraction. Talanta 85:1818–1824

    Article  CAS  Google Scholar 

  3. García-Robledo E, Corzo A, Papaspyrou S (2014) A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar Chem 162:30–36

    Article  Google Scholar 

  4. Zhang KG, Hu YL, Li GK (2013) Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Talanta 116:712–718

    Article  CAS  Google Scholar 

  5. Han JF, Zhang C, Liu F, Liu BH, Han MY, Zou WS, Yang L, Zhang ZP (2014) Upconversion nanoparticles for ratiometric fluorescence detection of nitrite. Analyst 139:3032–3038

    Article  CAS  Google Scholar 

  6. He LJ, Zhang KG, Wang CJ, Luo XL, Zhang SS (2011) Effective indirect enrichment and determination of nitrite ion in water and biological samples using ionic liquid-dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. J Chromatogr A 1218:3595–3600

    Article  CAS  Google Scholar 

  7. Budanova N, Fourest B, Maslennikov A (2009) Capillary electrophoresis determination of nitrate and nitrite in high-salt perchlorate solutions for the UC dissolution study. J Radioanal Nucl Chem 281:597–602

    Article  CAS  Google Scholar 

  8. Martínková E, Křžek T, Coufal P (2014) Determination of nitrites and nitrates in drinking water using capillary electrophoresis. Chem Pap 68:1008–1014

    Article  Google Scholar 

  9. Yue R, Lu Q, Zhou YK (2011) A novel nitrite biosensor based on single-layer graphene nanoplatelet-protein composite film. Biosens Bioelectron 26:4436–4441

    Article  CAS  Google Scholar 

  10. Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sensors Actuators B 143:539–546

    Article  CAS  Google Scholar 

  11. Néel B, Asfhar MG, Crespo GA, Pawlak M, Dorokhin D, Bakker E (2014) Nitrite-selective electrode based on cobalt (II) tert-butyl-salophen ionophore. Electroanalysis 26:473–480

    Article  Google Scholar 

  12. Dağcı K, Alanyalıoğlu M (2013) Electrochemical preparation of polymeric films of pyronin Y and its electrolcatalytic properties for amperometric detection of nitrite. J Electroanal Chem 711:17–24

    Article  Google Scholar 

  13. Newbery JE, de Haddad MPL (1985) Amperometric determination of nitrite by oxidation at a glassy carbon electrode. Analyst 110:81–82

    Article  CAS  Google Scholar 

  14. Chamsi AY, Fogg AG (1988) Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode. Analyst 113:1723–1727

    Article  CAS  Google Scholar 

  15. Barisci JN, Wallace GG (1991) Detection of nitrite using electrodes modified with an electrodeposited ruthenium-containing polymer. Anal Lett 24:2059–2073

    Article  CAS  Google Scholar 

  16. Zhao HT, Ju HX (2006) Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal Biochem 350:138–144

    Article  CAS  Google Scholar 

  17. Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. Trends Anal Chem 24:826–838

    Article  Google Scholar 

  18. Lin YH, Cui XL, Ye XR (2005) Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 7:267–274

    Article  CAS  Google Scholar 

  19. Zhao G, Liu KZ, Lin S, Liang J, Guo XY, Zhang ZJ (2004) Electrocatalytic reduction of nitrite using a carbon nanotube electrode in the presence of cupris ions. Microchim Acta 144:75–80

    Article  CAS  Google Scholar 

  20. Zeng JX, Wei WZ, Zhai XR, Yang PH, Yin J, Wu L, Liu XY, Liu K, Gong SG (2006) Assemble electrodeposited ultrathin conducting poly(azure a) at a carbon nanotube modified glassy carbon electrode, and its electrocatalytic properties to the reduction of nitrite. Microchim Acta 155:379–386

    Article  CAS  Google Scholar 

  21. Hasebe Y, Wang Y, Fukuoka K (2011) Electropolymerized poly(toluidine blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. J Environ Sci (China) 23:1050–1056

    Article  CAS  Google Scholar 

  22. Bai XY, Chen GH, Shiu KK (2013) Electrochemical biosensor based on reduced graphene oxide modified electrode with Prussian blue and poly(toluidine blue O) coating. Electrochim Acta 89:454–460

    Article  CAS  Google Scholar 

  23. Peng HP, Hu Y, Liu P, Deng YN, Wang P, Chen W, Liu AL, Chen YZ, Lin XH (2015) Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue-graphene oxide nanocomposites. Sensors Actuators B 207:269–276

    Article  CAS  Google Scholar 

  24. Kalimuthu P, John SA (2009) Highly sensitive and selective amperometric determination of nitrite using electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Electrochem Commun 11:1065–1068

    Article  CAS  Google Scholar 

  25. Wang YZ, Hu SS (2006) A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens Bioelectron 22:10–17

    Article  Google Scholar 

  26. Zhou DM, Sun JJ, Chen HY, Fang HQ (1998) Electrochemical polymerization of toluidine blue and its application for the amperometric determination of β-D-glucose. Electrochim Acta 43:1803–1809

    Article  CAS  Google Scholar 

  27. Laviron E, Roulier L (1980) General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules: applications to modified electrodes. J Electroanal Chem Interfac 115:65–74

    Article  CAS  Google Scholar 

  28. Salimi A, Noorbakhash A, Karonian FS (2006) Amperometric detection of nitrite, iodate and periodate on glassy carbon electrode modified with thionin and multi-wall carbon nanotubes. Int J Electrochem 1:435–445

    CAS  Google Scholar 

  29. Zhang LY, Yi M (2009) Electrochemical nitrite biosensor based on the immobilization of hemoglobin on an electrode modified by multiwall carbon nanotubes and positively charged gold nanoparticle. Bioprocess Biosyst Eng 32:485–492

    Article  CAS  Google Scholar 

  30. Yang SL, Xia BY, Zeng XD, Luo SL, Wei WZ, Liu XY (2010) Fabrication of DNA functionalized carbon nanotubes/Cu2+ complex by one-step electrodeposition and its sensitive determination of nitrite. Anal Chim Acta 667:57–62

    Article  CAS  Google Scholar 

  31. Chen QP, Ai SY, Fan H, Cai J, Ma Q, Zhu XB, Yin HS (2010) The immobilization of cytochrome c on MWNT-PAMAM-chit nanocomposite incorporated with DNA biocomposite film modified glassy carbon electrode for the determination of nitrite. J Solid State Electrochem 14:1681–1688

    Article  CAS  Google Scholar 

  32. Yuan JH, Jin XL, Li N, Chen JR, Miao JG, Zhang QX, Niu L, Song JX (2011) Large scale load of phosphotungstic acid on multiwalled carbon nanotubes with a grafted poly(4-vinylpyridine) linker. Electrochim Acta 56:10069–10076

    Article  CAS  Google Scholar 

  33. Hu FX, Chen SH, Wang CY, Yuan R, Yuan DH, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46

    Article  CAS  Google Scholar 

  34. Li P, Ding Y, Wang A, Zhou L, Wei SH, Zhou YM, Tang YW, Chen Y, Cai CX, Lu TH (2013) Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt (II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite. ACS Appl Mater Interfaces 5:2255–2260

    Article  CAS  Google Scholar 

  35. Zhou L, Wang JP, Gai L, Li DJ, Li YB (2013) An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk. Sensors Actuators B 181:65–70

    Article  CAS  Google Scholar 

  36. Mani V, Wu TY, Chen SM (2014) Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite. J Solid State Electrochem 18:1015–1023

    Article  CAS  Google Scholar 

  37. Rajalakshmi K, John SA (2015) Highly sensitive determination of nitrite using FMWCNTs-conducting polymer composite modified electrode. Sensors Actuators B 215:119–124

    Article  CAS  Google Scholar 

  38. Ye DX, Luo LQ, Ding YP, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563–4569

    Article  CAS  Google Scholar 

  39. Wang Q, Yun YB (2012) A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177:411–418

    Article  CAS  Google Scholar 

  40. Li SJ, Zhao GY, Zhang RX, Hou YL, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180:821–827

    Article  CAS  Google Scholar 

  41. Ikhsan N, Rameshkumar P, Pandikumar A (2015) Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 144:908–914

    Article  CAS  Google Scholar 

  42. Yang JH, Yang HT, Liu SH, Mao LQ (2015) Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sensors Actuators B 220:652–658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (863 Program) of China (2012AA101405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Zhang.

Ethics declarations

Competing interest

All authors declare that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Deng, D., Yuan, Y. et al. Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Microchim Acta 183, 1553–1561 (2016). https://doi.org/10.1007/s00604-016-1773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1773-z

Keywords

Navigation