Skip to main content
Log in

Colorimetric chiral discrimination and determination of enantiometric excess of D/L-tryptophan using silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for visual differentiation between the D- and L-forms of tryptophan (Trp). It is based on the inherent chirality of citrate-capped silver nanoparticles (AgNPs; ca. 15 nm in diameter) that can be used as chiral selector for D- and L-forms of Trp. On addition of D-Trp to a solution of the AgNPs, a color change from yellow to red can be seen, while no color change is found on addition of L-Trp. The chiral assay can be used to determine the enantiometric excess of D-Trp in the range from −50 % to 100 %. The effect can be detected with bare eyes and quantified by spectrophotometry. Notably, this method does not require any labeling or chiral modification. The method excels by its sensitivity, low cost, good availability of materials, and its simplicity.

The silver nanoparticles can discriminate the absolute configuration of Trp and determine the enantiomeric excess of Trp

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hao H, Wang G, Sun J (2005) Enantioselective pharmacokinetics of ibuprofen and involved mechanisms. Drug Metab Rev 37:215–234

    Article  CAS  Google Scholar 

  2. Seo SH, Kim S, Han MS (2014) Gold nanoparticle-based colorimetric chiral discrimination of histidine: application to determining the enantiomeric excess of histidine. Anal Methods 6:73–76

    Article  CAS  Google Scholar 

  3. Waldhier MC, Gruber MA, Dettmer K, Oefner PJ (2009) Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis. Anal Bioanal Chem 394:695–706

    Article  CAS  Google Scholar 

  4. Ilisz I, Aranyi A, Péter A (2013) Chiral derivatizations applied for the separation of unusual amino acid enantiomers by liquid chromatography and related techniques. J Chromatogr A 1296:119–139

    Article  CAS  Google Scholar 

  5. Bodoki E, Oltean M, Bodoki A, Ştiufiuc R (2012) Chiral recognition and quantification of propranolol enantiomers by surface enhanced Raman scattering through supramolecular interaction with β-cyclodextrin. Talanta 101:53–58

    Article  CAS  Google Scholar 

  6. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with cyclodextrin and graphene. Microchim Acta 181:501–509

    Article  CAS  Google Scholar 

  7. Park H, Kim KM, Lee A, Ham S, Nam W, Chin J (2007) Bioinspired chemical inversion of L-amino acids to D-amino acids. J Am Chem Soc 129:1518–1519

    Article  CAS  Google Scholar 

  8. Han C, Hou X, Zhang H, Guo W, Li H, Jiang L (2011) Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc 133:7644–7647

    Article  CAS  Google Scholar 

  9. Zhang M, Ye B (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83:1504–1509

    Article  CAS  Google Scholar 

  10. Tu T, Fang W, Bao X, Li X, Dötz KH (2011) Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum–steroid low-molecular-mass gelators. Angew Chem Int Ed 50:6601–6605

    Article  CAS  Google Scholar 

  11. Su L, Fei J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84:5753–5758

    Article  CAS  Google Scholar 

  12. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    Article  CAS  Google Scholar 

  13. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    Article  CAS  Google Scholar 

  14. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  15. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  16. Su H, Zheng Q, Li H (2012) Colorimetric detection and separation of chiral tyrosine based on N-acetyl-L-cysteine modified gold nanoparticles. J Mater Chem 22:6546–6548

    Article  CAS  Google Scholar 

  17. Sun Y, Zhang L, Li H (2012) Chiral colorimetric recognition of amino acids based on silver nanoparticle clusters. New J Chem 36:1442–1444

    Article  CAS  Google Scholar 

  18. Li H, Hu C, Han C, Xiong D, Tian D (2009) Synthesis of β-Cyclodextrin-modified silver quantum dots and chiral colorimetric recognition of tryptophan. Sci China Ser B 39:629–633

    Google Scholar 

  19. Xiong D, Chen M, Li H (2008) Synthesis of para-sulfonatocalix [4] arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun 44:880–882

    Article  Google Scholar 

  20. Gautier C, Bürgi T (2009) Chiral gold nanoparticles. ChemPhysChem 10:483–492

    Article  CAS  Google Scholar 

  21. Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757–771

    Article  CAS  Google Scholar 

  22. Zhang L, Xu C, Liu C, Li B (2014) Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal Chim Acta 809:123–127

    Article  CAS  Google Scholar 

  23. Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  24. Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81:6122–6129

    Article  CAS  Google Scholar 

  25. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Anal Biochem 262:137–156

    Article  CAS  Google Scholar 

  26. Liu W, Kou J, Jiang X, Zhang Z, Qi H (2012) Determination of nitrofurans in feeds based on silver nanoparticle-catalyzed chemiluminescence. J Lumin 132:1048–1054

    Article  CAS  Google Scholar 

  27. McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12:2483–2487

    Article  CAS  Google Scholar 

  28. Pellissier H (2008) Recent developments in dynamic kinetic resolution. Tetrahedron 64:1563–1601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (no. 21275096 and 21343015) and the Program for Key Science and Technology Innovation Team of Shaanxi Province (2014KCT-28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, B. & Xu, C. Colorimetric chiral discrimination and determination of enantiometric excess of D/L-tryptophan using silver nanoparticles. Microchim Acta 181, 1407–1413 (2014). https://doi.org/10.1007/s00604-014-1281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1281-y

Keywords

Navigation