Skip to main content
Log in

Numerical Aspects of Resonant States in Quantum Mechanics

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this manuscript a short review on the most popular numerical techniques in Quantum mechanics used to determine properties of the resonant states is presented. Some common ambiguities arising when theoretical calculations are compared with the experimental data are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.T. Pena, A.C. Fonseca, Use of splines to calculate resonance poles and Gamow states. Phys. Rev. C 36(5), 1737 (1987)

    Article  ADS  Google Scholar 

  2. Y.K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes. Phys. Rep. 99(1), 1 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. N. Moiseyev, Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302(5–6), 212–293 (1998)

    Article  ADS  Google Scholar 

  4. R. Lazauskas, arXiv:1904.04675 (2019)

  5. R. Hartree, J.G.L. Michel, N.P., Meteorological factors in radiowave propagation, Report of a Conference held on 8th April 1946 at The Royal Institution, London by The Physical Society and The Royal Meteorological Society (The Physical Society, London), pp. 127–168 (1946)

  6. J.N.L. Connor, Scattering amplitude without an explicit enforcement of boundary conditions. J. Chem. Phys. 78, 6161 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Nuttal, H.L. Cohen, Method of complex coordinates for three-body calculations above the breakup threshold. Phys. Rev. 188, 1542–1544 (1969)

    Article  ADS  Google Scholar 

  8. F.A. McDonald, J. Nuttall, Neutron-deuteron elastic scattering above the breakup threshold. Phys. Rev. C 6, 121–125 (1972)

    Article  ADS  Google Scholar 

  9. J. Aguilar, J.M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269 (1971)

    Article  ADS  MATH  Google Scholar 

  10. E. Balslev, J.M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun. Math. Phys. 22, 280 (1971)

    Article  ADS  MATH  Google Scholar 

  11. T.N. Rescigno, M. Baertschy, W.A. Isaacs, C.W. McCurdy, Collisional breakup in a quantum system of three charged particles. Science 286(5449), 2474–2479 (1999)

    Article  Google Scholar 

  12. B. Simon, The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. A 71(2), 211–214 (1979)

    Article  ADS  Google Scholar 

  13. J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Courier Corporation (2006)

  14. A. Deltuva, Three-neutron resonance study using transition operators. Phys. Rev. C 97(3), 034001 (2018)

    Article  ADS  Google Scholar 

  15. A. Deltuva, Tetraneutron: Rigorous continuum calculation. Phys. Lett. B 782, 238–241 (2018)

    Article  ADS  Google Scholar 

  16. V. Kukulin, V. Krasnopolsky, Description of few body systems via analytical continuation in coupling constant. J. Phys. A 10, L33–L37 (1977)

    Article  ADS  Google Scholar 

  17. V. Krasnopolsky, V. Kukulin, Theory of resonance states based on analytical continuation in the coupling constant. Phys. Lett. A 69(4), 251–254 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  18. V.I. Kukulin, V.M. Krasnopolsky, J. Horácek, Theory of Resonances: Principles and Applications (Reidel Texts in the Mathematical Sciences, Springer, Netherlands, 1989)

  19. Jr, G. A. Baker, The theory and application of the Padé approximant method,Los Alamos Scientific Lab., Univ. of California, N. Mex. (1964)

  20. A. Hemmdan, W. Gløckle, H. Kamada, Indications for the nonexistence of three-neutron resonances near the physical region. Phys. Rev. C 66, 054001 (2002)

    Article  ADS  Google Scholar 

  21. R. Lazauskas, J. Carbonell, Three-neutron resonance trajectories for realistic interaction models. Phys. Rev. C 71, 044004 (2005)

    Article  ADS  Google Scholar 

  22. R. Lazauskas, J. Carbonell, Is a physically observable tetraneutron resonance compatible with realistic nuclear interactions? Phys. Rev. C 72, 034003 (2005)

    Article  ADS  Google Scholar 

  23. R. Lazauskas, E. Hiyama, J. Carbonell, Ab initio calculations of 5H resonant states. Phys. Lett. B 791, 335 (2019)

    Article  ADS  Google Scholar 

  24. H.S. Taylor, Models, interpretations, and calculations concerning resonant electron scattering process in atoms and molecules. Adv. Chern. Phys. 18, 91 (1970)

    Google Scholar 

  25. J. Simons, Resonance state lifetimes from stabilization graphs. J. Chem. Phys. 75(5), 2465–2467 (1981)

    Article  ADS  Google Scholar 

  26. Q. Meng, M. Harada, E. Hiyama, A. Hosaka, M. Oka, Doubly heavy tetraquark resonant states. Phys. Lett. B 824, 136800 (2022)

    Article  Google Scholar 

  27. E. Hiyama, R. Lazauskas, J. Carbonell, 7H ground state as a 3H+ 4n resonance. Phys. Lett. B 833, 137367 (2022)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

In preparing this manuscript I have benefited from the grant of French CNRS/IN2P3 for a theory project “Neutron-rich light unstable nuclei”. I was also granted access to the HPC resources of TGCC/IDRIS under the allocation A0110506006 made by GENCI (Grand Equipement National de Calcul Intensif). Part of this manuscript has been prepared during the program Living Near Unitarity at the Kavli Institute for Theoretical Physics (KITP), University of Santa Barbara (California) is supported in part by the National Science Foundation under Grant No. NSF PHY-1748958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimantas Lazauskas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazauskas, R. Numerical Aspects of Resonant States in Quantum Mechanics. Few-Body Syst 64, 24 (2023). https://doi.org/10.1007/s00601-023-01808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01808-x

Navigation