Skip to main content
Log in

A new approach to solving the Schrödinger equation using wavefunction potentials in two and three dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Madelung–Bohm approach to Quantum Mechanics is used to extend the one-dimensional case to solve the Schrödinger equation by defining potentials for the wavefunctions in two and three dimensions. The relevance of these results to solving the phase retrieval problem (PRP) is stressed. In particular, the one-dimensional problem is solved completely and significant progress is made toward the solution of the PRP in two and three dimensions. Examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. E. Madelung, Quantum Theory in Hydrodynamical Form. Zeit. f. Phys. 40, 322 (1927)

    Article  ADS  Google Scholar 

  2. D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.A. Hojman, F.A. Asenjo, A new approach to solve the one-dimensional Schrödinger equation using a wavefunction potential. Phys. Lett. A 384, 126913 (2020). https://doi.org/10.1016/j.physleta.2020.126913

    Article  MathSciNet  Google Scholar 

  4. M. Berry, N. Balazs, Nonspreading wave packets. Am. J. Phys. 47, 264 (1979)

    Article  ADS  Google Scholar 

  5. G.A. Siviloglou, D.N. Christodoulides, Accelerating finite energy Airy beams. Opt. Lett. 32, 979 (2007)

    Article  ADS  Google Scholar 

  6. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating airy beams. Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  7. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, A. Arie, Generation of electron Airy beams. Nature 494(7437), 331 (2013)

    Article  ADS  Google Scholar 

  8. A. Patsyk, M. Bandres, R. Bekenstein, M. Segev, Observation of accelerating wave packets in curved space. Phys. Rev. X 8, 011001 (2018)

    Google Scholar 

  9. S.A. Hojman, F.A. Asenjo, H.M. Moya-Cessa, F. Soto-Eguibar, Bohm potential is real and its effects are measurable. Optik 232, 166341 (2021). https://doi.org/10.1016/j.ijleo.2021.166341

    Article  ADS  Google Scholar 

  10. W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik. Handbuch der Physik 24, 83–272 (1933)

    Google Scholar 

  11. R.A. Gonsalves, Phase retrieval from modulus data. J. Opt. Soc. Am. 66, 961 (1976)

    Article  ADS  Google Scholar 

  12. B.Z. Moroz, A.M. Perelomov, On a problem posed by Pauli. Theor. Math. Phys. 101, 1200 (1994). https://doi.org/10.1007/BF01079256

    Article  Google Scholar 

  13. R.S. Ismagilov, On the Pauli problem. Funct. Anal. Appl. 30, 138 (1996). https://doi.org/10.1007/BF02509456

    Article  MathSciNet  Google Scholar 

  14. V. Elser, T.-Y. Lan, T. Bendory, Benchmark problems for phase retrieval. SIAM J. Imaging Sci. (2018). https://doi.org/10.48550/arXiv.1706.00399

    Article  MathSciNet  Google Scholar 

  15. M.V. Klibanov, P.E. Sacks, A.V. Tikhonravov, The phase retrieval problem. Inverse Prob. 11, 1 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.A. de Gosson, The Pauli problem for Gaussian quantum states: geometric interpretation. Mathematics 9, 2578 (2021). https://doi.org/10.3390/math9202578

    Article  Google Scholar 

  17. P. Jaming, S. Pérez-Esteva, The phase retrieval problem for solutions of the Helmholtz equation. Inverse Prob. 33, 105007 (2017). https://doi.org/10.1088/1361-6420/aa8640

    Article  ADS  MathSciNet  Google Scholar 

  18. B.H. Dean et al., Phase retrieval algorithm for JWST flight and testbed telescope. Proc. SPIE 6265, 626511–1 (2006). https://doi.org/10.1117/12.673569

    Article  Google Scholar 

  19. J.R. Fienup, Phase-retrieval wave-front sensing for the Hubble and future space telescopes (2011), https://ntrs.nasa.gov/api/citations/20180000018/downloads/20180000018.pdf

  20. VYu. Ivanov, V.P. Sivokon, M.A. Vorontsov, Phase retrieval from a set of intensity measurements: theory and experiment. J. Opt. Soc. Am. A 9, 1515 (1992)

    Article  ADS  Google Scholar 

  21. Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87 (2015). https://doi.org/10.1109/MSP.2014.2352673

    Article  ADS  Google Scholar 

  22. R. Hart, H. Chang, Y. Lou, Empirical studies on phase retrieval, in IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), vol. 1 (2018), https://doi.org/10.1109/IVMSPW.2018.8448928

  23. C. Tradonsky, I. Gershenzon, V. Pal, R. Chriki, A.A. Friesem, O. Raz, N. Davidson, Rapid laser solver for the phase retrieval problem. Sci. Adv. 5, eaax4530 (2019). https://doi.org/10.1126/sciadv.aax4530

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Hojman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villaflor, V.A., Muñoz-Mosqueira, V.A. & Hojman, S.A. A new approach to solving the Schrödinger equation using wavefunction potentials in two and three dimensions. Eur. Phys. J. Plus 139, 391 (2024). https://doi.org/10.1140/epjp/s13360-024-05196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05196-x

Navigation