Skip to main content

Advertisement

Log in

Navigated percutaneous versus open pedicle screw implantation using intraoperative CT and robotic cone-beam CT imaging

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Percutaneous paraspinal pedicle screw implantation (PPSI) reduces soft tissue trauma, blood loss, and postoperative pain but remains technically challenging and associated with radiation exposure and implant-related artefacts. Here, we determined the feasibility, screw accessibility, and the accuracy of navigated PPSI in the thoraco-lumbar sacral spine using intraoperative computed tomography (iCT) and robotic cone-beam CT (CBCT) imaging.

Methods

Between 2015 and 2018, 465 percutaneous paraspinal pedicle screws were implanted in 75 patients using iCT- or CBCT-based spinal navigation with 230 screws connected to rod reducers during screw assessment imaging (iCT 198; CBCT 32). Clinical and demographic data, intraoperative screw accessibility, and screw accuracy were analyzed and compared to a case-matched cohort of 75 patients undergoing navigated implantation of 481 pedicle screws through an open midline approach.

Results

Both iCT and CBCT permitted reliable assessment of each implanted screw, regardless of artifacts caused by rod reducers. Although overall accuracy for correct placement was comparable between PPSI and open surgery (PPSI 96.6%; Open 94.2%), PPSI compared favorably to open surgery regarding complete placement within the pedicle (PPSI 90.1%; Open 75.1%; p  <  0.0001), regional placement accuracy in the lumbar (PPSI 97.8%; Open 91.5%; p  <  0.001), and lumbar-sacral spine (PPSI 100%; Open 81.2%; p  <  0.05), next to the duration of surgery and length of hospitalization.

Conclusions

PPSI with iCT- and CBCT-based spinal navigation improves the accuracy, safety, and workflow of navigated spinal instrumentation. Next, a cost-effectiveness and outcome analysis should determine whether iCT and CBCT imaging are truly economically justified.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nolte LP, Zamorano LJ, Jiang Z, et al (1995) Image-guided insertion of transpedicular screws. A laboratory set-up. Spine (Phila Pa 1976) 20:497–500.

    Article  CAS  Google Scholar 

  2. Berlemann U, Monin D, Arm E et al (1997) Planning and insertion of pedicle screws with computer assistance. J Spinal Disord 10:117–124

    Article  CAS  Google Scholar 

  3. Amiot LP, Bellefleur C, Labelle H (1997) In vitro evaluation of computer-assisted pedicle screw system. Ann Chir 51:854–860

    CAS  PubMed  Google Scholar 

  4. Ludwig SC, Kowalski JM, Edwards CC, Heller JG (2000) Cervical pedicle screws: comparative accuracy of two insertion techniques. Spine (Phila Pa 1976) 25:2675–2681.

    Article  CAS  Google Scholar 

  5. Richter M, Amiot LP, Neller S et al (2000) Computer-assisted surgery in posterior instrumentation of the cervical spine: an in-vitro feasibility study. Eur Spine J 9(Suppl 1):S65–70

    Article  Google Scholar 

  6. Laine T, Lund T, Ylikoski M et al (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240

    Article  CAS  Google Scholar 

  7. Hott JS, Papadopoulos SM, Theodore N, et al (2004) Intraoperative Iso-C C-arm navigation in cervical spinal surgery: review of the first 52 cases. Spine (Phila Pa 1976) 29:2856–2860.

    Article  Google Scholar 

  8. Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine (Phila Pa 1976) 30:2280–2287.

    Article  Google Scholar 

  9. Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13:50–59. https://doi.org/10.1007/s00586-003-0604-1

    Article  PubMed  Google Scholar 

  10. Waschke A, Walter J, Duenisch P et al (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J 22:654–660. https://doi.org/10.1007/s00586-012-2509-3

    Article  PubMed  Google Scholar 

  11. Zausinger S, Scheder B, Uhl E, et al (2009) Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine (Phila Pa 1976) 34:2919–2926.

    Article  Google Scholar 

  12. Rivkin MA, Yocom SS (2014) Thoracolumbar instrumentation with CT-guided navigation (O-arm) in 270 consecutive patients: accuracy rates and lessons learned. Neurosurg Focus 36:E7. https://doi.org/10.3171/2014.1.FOCUS13499

    Article  PubMed  Google Scholar 

  13. Tormenti MJ, Kostov DB, Gardner PA et al (2010) Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus 28:E11. https://doi.org/10.3171/2010.1.FOCUS09275

    Article  PubMed  Google Scholar 

  14. Navarro-Ramirez R, Lang G, Lian X et al (2017) Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable intraoperative computed tomography 3-dimensional navigation system. World Neurosurg 100:325–335. https://doi.org/10.1016/j.wneu.2017.01.025

    Article  PubMed  Google Scholar 

  15. Foley KT, Gupta SK, Justis JR, Sherman MC (2001) Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus 10:E10

    Article  CAS  Google Scholar 

  16. Mobbs RJ, Sivabalan P, Li J (2011) Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18:741–749. https://doi.org/10.1016/j.jocn.2010.09.019

    Article  PubMed  Google Scholar 

  17. Kim D-Y, Lee S-H, Chung SK, Lee H-Y (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976) 30:123–129.

    Article  Google Scholar 

  18. McAnany SJ, Overley SC, Kim JS et al (2016) Open versus minimally invasive fixation techniques for thoracolumbar trauma: a meta-analysis. Global Spine J 6:186–194

    Article  Google Scholar 

  19. Joseph JR, Smith BW, La Marca F, Park P (2015) Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 39:E4. https://doi.org/10.3171/2015.7.FOCUS15278

    Article  PubMed  Google Scholar 

  20. Mobbs RJ, Raley DA (2014) Complications with K-wire insertion for percutaneous pedicle screws. J Spinal Disord Tech 27:390–394. https://doi.org/10.1097/BSD.0b013e3182999380

    Article  PubMed  Google Scholar 

  21. Shin BJ, James AR, Njoku IU, Hartl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122. https://doi.org/10.3171/2012.5.SPINE11399

    Article  PubMed  Google Scholar 

  22. Gelalis ID, Paschos NK, Pakos EE et al (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255. https://doi.org/10.1007/s00586-011-2011-3

    Article  PubMed  Google Scholar 

  23. Hecht N, Yassin H, Czabanka M, et al (2018) Intraoperative computed tomography versus 3D C-Arm imaging for navigated spinal instrumentation. Spine (Phila Pa 1976) 43:370–377. https://doi.org/10.1097/BRS.0000000000002173

    Article  Google Scholar 

  24. Hecht N, Kamphuis M, Czabanka M et al (2015) Accuracy and workflow of navigated spinal instrumentation with the mobile AIRO(®) CT scanner. Eur Spine J. https://doi.org/10.1007/s00586-015-3814-4

    Article  PubMed  Google Scholar 

  25. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14.

    Article  CAS  Google Scholar 

  26. Rampersaud YR, Pik JHT, Salonen D, Farooq S (2005) Clinical accuracy of fluoroscopic computer-assisted pedicle screw fixation: a CT analysis. Spine (Phila Pa 1976) 30:E183–90.

    Article  Google Scholar 

  27. Singh K, Nandyala SV, Marquez-Lara A et al (2014) A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J 14:1694–1701. https://doi.org/10.1016/j.spinee.2013.10.053

    Article  PubMed  Google Scholar 

  28. Wu M-H, Dubey NK, Li Y-Y et al (2017) Comparison of minimally invasive spine surgery using intraoperative computed tomography integrated navigation, fluoroscopy, and conventional open surgery for lumbar spondylolisthesis: a prospective registry-based cohort study. Spine J 17:1082–1090. https://doi.org/10.1016/j.spinee.2017.04.002

    Article  PubMed  Google Scholar 

  29. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine (Phila Pa 1976) 26:352–359.

    Article  CAS  Google Scholar 

  30. Villard J, Ryang Y-M, Demetriades AK et al (2014) Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. 39:1004–1009. https://doi.org/10.1097/BRS.0000000000000351

    Article  Google Scholar 

  31. Cordemans V, Kaminski L, Banse X et al (2017) Pedicle screw insertion accuracy in terms of breach and reposition using a new intraoperative cone beam computed tomography imaging technique and evaluation of the factors associated with these parameters of accuracy: a series of 695 screws. Eur Spine J 26:2917–2926. https://doi.org/10.1007/s00586-017-5195-3

    Article  PubMed  Google Scholar 

  32. Czabanka M, Haemmerli J, Hecht N et al (2017) Spinal navigation for posterior instrumentation of C1–2 instability using a mobile intraoperative CT scanner. J Neurosurg Spine 27:268–275. https://doi.org/10.3171/2017.1.SPINE16859

    Article  PubMed  Google Scholar 

  33. Scheufler K-M, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, part I: cervicothoracic spine. Neurosurgery 69:782–795. https://doi.org/10.1227/NEU.0b013e318222ae16

    Article  PubMed  Google Scholar 

  34. Dea N, Fisher CG, Batke J et al (2016) Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J 16:23–31. https://doi.org/10.1016/j.spinee.2015.09.062

    Article  PubMed  Google Scholar 

  35. Gao S, Lv Z, Fang H (2018) Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J 27:921–930. https://doi.org/10.1007/s00586-017-5333-y

    Article  PubMed  Google Scholar 

  36. Molliqaj G, Schatlo B, Alaid A et al (2017) Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus 42:E14. https://doi.org/10.3171/2017.3.FOCUS179

    Article  PubMed  Google Scholar 

  37. Ringel F, Stuer C, Reinke A, et al (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 37:E496–E501. https://doi.org/10.1097/BRS.0b013e31824b7767

    Article  Google Scholar 

  38. Schatlo B, Molliqaj G, Cuvinciuc V et al (2014) Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine 20:636–643. https://doi.org/10.3171/2014.3.SPINE13714

    Article  PubMed  Google Scholar 

  39. Kantelhardt SR, Martinez R, Baerwinkel S et al (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:860–868. https://doi.org/10.1007/s00586-011-1729-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scarone P, Vincenzo G, Distefano D et al (2018) Use of the Airo mobile intraoperative CT system versus the O-arm for transpedicular screw fixation in the thoracic and lumbar spine: a retrospective cohort study of 263 patients. J Neurosurg Spine 29:397–406

    Article  Google Scholar 

  41. Farah K, Coudert P, Graillon T et al (2018) Prospective comparative study in spine surgery between o-arm and airo systems: efficacy and radiation exposure. World Neurosurg 118:e175–e184. https://doi.org/10.1016/j.wneu.2018.06.148

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vajkoczy.

Ethics declarations

Conflict of interest

Peter Vajkoczy has served as a consultant for Aesculap and Ulrich Medical. The other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkatschenko, D., Kendlbacher, P., Czabanka, M. et al. Navigated percutaneous versus open pedicle screw implantation using intraoperative CT and robotic cone-beam CT imaging. Eur Spine J 29, 803–812 (2020). https://doi.org/10.1007/s00586-019-06242-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06242-4

Keywords

Navigation