Skip to main content

Advertisement

Log in

Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Several studies have revealed that robot-assisted technique might improve the pedicle screw insertion accuracy, but owing to the limited sample sizes in the individual study reported up to now, whether or not robot-assisted technique is superior to conventional freehand technique is indefinite. Thus, we performed this systematic review and meta-analysis based on randomized controlled trials to assess which approach is better.

Methods

Electronic databases including PubMed, EMBASE, CENTRAL, ISI Web of Science, CNKI and WanFang were systematically searched to identify potentially eligible articles. Main endpoints containing the accuracy of pedicle screw implantation and proximal facet joint violation were evaluated as risk ratio (RR) and the associated 95% confidence intervals (95% CIs), while radiation exposure and surgical duration were presented as mean difference (MD) or standard mean difference (SMD). Meta-analyses were performed using RevMan 5.3 software.

Results

Six studies involving 158 patients (688 pedicle screws) in robot-assisted group and 148 patients (672 pedicle screws) in freehand group were identified matching our study. The Grade A accuracy rate in robot-assisted group was superior to freehand group (RR 1.03, 95% CI 1.00, 1.06; P = 0.04), but the Grade A + B accuracy rate did not differ between the two groups (RR 1.01, 95% CI 0.99, 1.02; P = 0.29). With regard to proximal facet joint violation, the combined results suggested that robot-assisted group was associated with significantly fewer proximal facet joint violation than freehand group (RR 0.07, 95% CI 0.01, 0.55; P = 0.01). As was the radiation exposure, our findings suggested that robot-assisted technique could significantly reduce the intraoperative radiation time (MD − 12.38, 95% CI − 17.95, − 6.80; P < 0.0001) and radiation dosage (SMD − 0.64, 95% CI − 0.85, − 0.43; P < 0.00001). But the overall surgical duration was longer in robot-assisted group than conventional freehand group (MD 20.53, 95% CI 5.17, 35.90; P = 0.009).

Conclusions

The robot-assisted technique was associated with equivalent accuracy rate of pedicle screw implantation, fewer proximal facet joint violation, less intraoperative radiation exposure but longer surgical duration than freehand technique. Powerful evidence relies on more randomized controlled trials with high quality and larger sample size in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gaines RW Jr (2000) The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J bone Jt Surg Am 82-A:1458–1476

    Article  Google Scholar 

  2. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17:299–306

    Article  CAS  PubMed  Google Scholar 

  3. Panjabi MM, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16:888–901

    Article  CAS  PubMed  Google Scholar 

  4. Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146. https://doi.org/10.1007/s00586-003-0586-z

    Article  CAS  PubMed  Google Scholar 

  5. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991) Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine 16:861–869

    Article  CAS  PubMed  Google Scholar 

  6. Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, Villavicencio AT (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosur Spine 20:196–203. https://doi.org/10.3171/2013.11.spine13413

    Article  Google Scholar 

  7. Nolte LP, Visarius H, Arm E, Langlotz F, Schwarzenbach O, Zamorano L (1995) Computer-aided fixation of spinal implants. J Image Guid Surg 1:88–93. doi:10.1002/(SICI)1522-712X(1995)1:2<88::AID-IGS3>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  8. Tjardes T, Shafizadeh S, Rixen D, Paffrath T, Bouillon B, Steinhausen ES, Baethis H (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19:25–45. https://doi.org/10.1007/s00586-009-1091-9

    Article  PubMed  Google Scholar 

  9. Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 19:370–375. https://doi.org/10.1007/s00586-009-1258-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barzilay Y, Liebergall M, Fridlander A, Knoller N (2006) Miniature robotic guidance for spine surgery–introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot Comput Assist Surg MRCAS 2:146–153. https://doi.org/10.1002/rcs.90

    Article  CAS  Google Scholar 

  11. Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N, Benzel EC (2006) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I-Technical development and a test case result. Neurosurgery 59:641–650. https://doi.org/10.1227/01.neu.0000229055.00829.5b (discussion 641–650)

    Article  PubMed  Google Scholar 

  12. Lieberman IH, Hardenbrook MA, Wang JC, Guyer RD (2012) Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech 25:241–248. https://doi.org/10.1097/BSD.0b013e318218a5ef

    Article  PubMed  Google Scholar 

  13. Liu H, Chen W, Wang Z, Lin J, Meng B, Yang H (2016) Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis. Int J Comput Assist Radiol Surg 11:2273–2281. https://doi.org/10.1007/s11548-016-1448-6

    Article  PubMed  Google Scholar 

  14. Marcus HJ, Cundy TP, Nandi D, Yang GZ, Darzi A (2014) Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J 23:291–297. https://doi.org/10.1007/s00586-013-2879-1

    Article  PubMed  Google Scholar 

  15. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  16. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15:11–14

    Article  CAS  PubMed  Google Scholar 

  17. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359

    Article  CAS  PubMed  Google Scholar 

  18. Cahill KS, Wang MY (2012) Evaluating the accuracy of robotic assistance in spine surgery. Neurosurgery 71:N20–N21

    Article  CAS  PubMed  Google Scholar 

  19. Kim HJ, Kang KT, Park SC, Kwon OH, Son J, Chang BS, Lee CK, Yeom JS, Lenke LG (2017) Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial-perspective for patient-specific finite element analysis. Spine J 17:671–680. https://doi.org/10.1016/j.spinee.2016.11.010

    Article  PubMed  Google Scholar 

  20. Hyun SJ, Kim KJ, Jahng TA, Kim HJ (2017) Minimally invasive robotic versus open fluoroscopicguided spinal instrumented fusions: a randomized controlled trial. Spine 42(6):353–358. doi:10.1097/BRS.0000000000001778

    Article  PubMed  Google Scholar 

  21. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, Yi JM, Yeom JS (2015) Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine 40(2):87–94. doi:10.1097/BRS.0000000000000680

    Article  PubMed  Google Scholar 

  22. Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT, Yeom JS (2016) A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot Comput Assist Surg MRCAS. https://doi.org/10.1002/rcs.1779

    Google Scholar 

  23. Ringel F, Stuer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine 37:E496–E501. https://doi.org/10.1097/BRS.0b013e31824b7767

    Article  PubMed  Google Scholar 

  24. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Suppl 1):12–18. https://doi.org/10.1227/NEU.0b013e318270d02c

    Article  PubMed  Google Scholar 

  25. Tian W, Fan MX, Han XG, Zhao JW, Liu YJ (2016) Pedicle screw insertion in spine: a randomized comparison study of robot-assisted surgery and fluoroscopy-guided techniques. J Clin Orthop Res 1:4–10. https://doi.org/10.3969/j.issn.2096-269X.2016.01.002

    Google Scholar 

  26. Macke JJ, Woo R, Varich L (2016) Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population. J Robot Surg 10:145–150. https://doi.org/10.1007/s11701-016-0587-7

    Article  PubMed  Google Scholar 

  27. Overley SC, Cho SK, Mehta AI, Arnold PM (2017) Navigation and robotics in spinal surgery: where are we now? Neurosurgery 80:S86–S99. https://doi.org/10.1093/neuros/nyw077

    Article  PubMed  Google Scholar 

  28. Joseph JR, Smith BW, Liu X, Park P (2017) Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus 42:E2. https://doi.org/10.3171/2017.2.focus16544

    Article  PubMed  Google Scholar 

  29. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J (2016) Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J 25:947–955. https://doi.org/10.1007/s00586-015-3758-8

    Article  PubMed  Google Scholar 

  30. Perisinakis K, Damilakis J, Theocharopoulos N, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N (2004) Patient exposure and associated radiation risks from fluoroscopically guided vertebroplasty or kyphoplasty. Radiology 232:701–707. https://doi.org/10.1148/radiol.2323031412

    Article  PubMed  Google Scholar 

  31. Mastrangelo G, Fedeli U, Fadda E, Giovanazzi A, Scoizzato L, Saia B (2005) Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Oxf, Engl) 55:498–500. https://doi.org/10.1093/occmed/kqi048

    Article  Google Scholar 

  32. Alaid A, von Eckardstein K, Smoll NR, Solomiichuk V, Rohde V, Martinez R, Schatlo B (2017) Robot guidance for percutaneous minimally invasive placement of pedicle screws for pyogenic spondylodiscitis is associated with lower rates of wound breakdown compared to conventional fluoroscopy-guided instrumentation. Neurosurg Rev. https://doi.org/10.1007/s10143-017-0877-1

    PubMed  Google Scholar 

  33. Barzilay Y, Schroeder JE, Hiller N, Singer G, Hasharoni A, Safran O, Liebergall M, Itshayek E, Kaplan L (2014) Robot-assisted vertebral body augmentation: a radiation reduction tool. Spine 39:153–157. https://doi.org/10.1097/brs.0000000000000100

    Article  PubMed  Google Scholar 

  34. Keric N, Doenitz C, Haj A, Rachwal-Czyzewicz I, Renovanz M, Wesp DMA, Boor S, Conrad J, Brawanski A, Giese A, Kantelhardt SR (2017) Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus 42:E11. https://doi.org/10.3171/2017.2.focus16552

    Article  PubMed  Google Scholar 

  35. Kim HJ, Chun HJ, Kang KT, Moon SH, Kim HS, Park JO, Moon ES, Kim BR, Sohn JS, Ko YN, Lee HM (2012) The biomechanical effect of pedicle screws’ insertion angle and position on the superior adjacent segment in 1 segment lumbar fusion. Spine 37:1637–1644. https://doi.org/10.1097/BRS.0b013e31823f2115

    Article  PubMed  Google Scholar 

  36. Shah RR, Mohammed S, Saifuddin A, Taylor BA (2003) Radiologic evaluation of adjacent superior segment facet joint violation following transpedicular instrumentation of the lumbar spine. Spine 28:272–275. https://doi.org/10.1097/01.brs.0000042361.93572.74

    PubMed  Google Scholar 

  37. Babu R, Park JG, Mehta AI, Shan T, Grossi PM, Brown CR, Richardson WJ, Isaacs RE, Bagley CA, Kuchibhatla M, Gottfried ON (2012) Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery 71:962–970. https://doi.org/10.1227/NEU.0b013e31826a88c8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Levin JM, Alentado VJ, Healy AT, Steinmetz MP, Benzel EC, Mroz TE (2017) Superior segment facet joint violation during instrumented lumbar fusion is associated with higher reoperation rates and diminished improvement in quality of life. Clin Spine Surg. https://doi.org/10.1097/bsd.0000000000000566

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengtao Lv or Huang Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Lv, Z. & Fang, H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J 27, 921–930 (2018). https://doi.org/10.1007/s00586-017-5333-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5333-y

Keywords

Navigation