Skip to main content
Log in

The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Phlebopus portentosus is one of the most popular wild edible mushrooms in Thailand and can produce sporocarps in the culture without a host plant. However, it is still unclear whether Phlebopus portentosus is a saprotrophic, parasitic, or ectomycorrhizal (ECM) fungus. In this study, Phlebopus portentosus sporocarps were collected from northern Thailand and identified based on morphological and molecular characteristics. We combined mycorrhizal synthesis and stable isotopic analysis to investigate the trophic status of this fungus. In a greenhouse experiment, ECM-like structures were observed in Pinus kesiya at 1 year after inoculation with fungal mycelium, and the association of Phlebopus portentosus and other plant species showed superficial growth over the root surface. Fungus-colonized root tips were described morphologically and colonization confirmed by molecular methods. In stable isotope measurements, the δ13C and δ15N of natural samples of Phlebopus portentosus differed from saprotrophic fungi. Based on the isotopic patterns of Phlebopus portentosus and its ability to form ECM-like structures in greenhouse experiments, we conclude that Phlebopus portentosus could be an ECM fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology: techniques for the study of mycorrhiza. Academic, San Diego, pp 25–73

    Chapter  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107. doi:10.1007/s11557-006-0505-x

    Article  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320. doi:10.1111/j.1574-6941.2010.01000.x

    Article  CAS  PubMed  Google Scholar 

  • Binder M, Hibbett DS (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98:971–981. doi:10.3852/mycologia.98.6.971

    Article  PubMed  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:479–495. doi:10.1017/S1464793103006316

    Article  Google Scholar 

  • Brundrett MC, Kendrick B (1987) The relationship between the ash bolete (Boletinellus merulioides) and an aphid parasite on ash tree roots. Symbiosis 3:315–319

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph, Canbera

    Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1994) Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated onto Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739. doi:10.1111/j.1469-8137.1994.tb02977.x

    Article  Google Scholar 

  • Chung HC, Kim DH, Lee SS (2002) Mycorrhizal formations and seedling growth of Pinus densiflora by in vitro synthesis with the inoculation of ectomycorrhizal fungi. Mycobiology 30:70–75

    Article  Google Scholar 

  • Dell B (2002) Role of mycorrhizal fungi in ecosystems. CMU J Nat Sci 1:47–60

    Google Scholar 

  • Den BHC, Gravendeel B, Kuyper TW (2004) An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1. Mycologia 96:102–118. doi:10.2307/3761992

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feugey L, Strullu DG, Poupard P, Simoneau P (1999) Induced defence responses limit Hartig net formation in ectomycorrhizal birch roots. New Phytol 144:541–547. doi:10.1046/j.1469-8137.1999.00538.x

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Gebauer G, Taylor AFS (1999) 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytol 142:93–101

    Article  Google Scholar 

  • Gleixner G, Danier HJ, Werner RA, Schmidt HL (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol 102:1287–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hart SC, Gehring CA, Selmants PC, Deckert RJ (2006) Carbon and nitrogen elemental and isotopic pattern in macrofungal sporocarps and trees in semiarid forests of the south-western USA. Funct Ecol 20:42–51. doi:10.1111/j.1365-2435.2005.01058.x

    Article  Google Scholar 

  • Hasselquist NJ, Douhan GW, Allen MF (2011) First report of ectomycorrhizal status of boletes on Northern Yucatan Peninsula, Mexico determined using isotopic method. Mycorrhiza 21:456–471. doi:10.1007/s00572-010-0355-x

    Article  Google Scholar 

  • Heinemann P, Rammeloo J (1982) Observations sur le genre Phlebopus (Boletineae). Mycotaxon 15:384–404

    Google Scholar 

  • Henn MR, Chapela IH (2001) Ecophysiology of 13C and 15N isotope fractionation in forest fungi and the roots of the saprotrophic mycorrhizal divide. Oecologia 128:480–487

    Article  Google Scholar 

  • Hobbie EA (2005) Using isotopic tracers to follow carbon and nitrogen cycling of fungi. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, pp 361–381

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83. doi:10.1007/s11104-009-0032-z

    Article  CAS  Google Scholar 

  • Hobbie EA, Diepen LT, Lilleskov EA, Ouimette AP, Finzi AC, Hofmockel KS (2014) Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment. New Phytol 201:1431–1439

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–268. doi:10.1007/s00442-005-0208-z

    Article  PubMed  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353–360

    Article  Google Scholar 

  • Hobbie EA, Wallander H (2006) Integrating ectomycorrhizal fungi into quantitative frameworks of forest carbon and nitrogen cycling. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, New York, pp 98–128

    Chapter  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs. saprotrophic status of fungi: the isotopic evidence. New Phytol 150:601–610. doi:10.1046/j.1469-8137.2001.00134.x

    Article  CAS  Google Scholar 

  • Hou W, Lian B, Dong H, Jiang H, Wu X (2012) Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. Geosci Front 3:351–356. doi:10.1016/j.gsf.2011.12.005

    Article  Google Scholar 

  • Ji KP, Cao Y, Zhang CX, He MX, Liu J, Wang WB, Wang Y (2011) Cultivation of Phlebopus portentosus in southern China. Mycol Prog 10:293–300. doi:10.1007/s11557-010-0700-7

    Article  Google Scholar 

  • Ji KP, He MX, Zhang CX, Liu J, Wang WB, Hou JY (2009) Semi-artificial simulate cultivation of Phlebopus portentosus and the durability of hyphae on host roots. Microbiology 36:377–382

    Google Scholar 

  • Kikuchi K, Matsushita N, Suzuki K (2009) Fruit body formation of Tylopilus castaneiceps in pure culture. Mycoscience 50:313–316. doi:10.1007/s10267-009-0481-5

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI Europe, Wallingford

    Google Scholar 

  • Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytol 144:323–330. doi:10.1046/j.1469-8137.1999.00508.x

    Article  Google Scholar 

  • Kumla J, Bussaban B, Suwannarach N, Lumyong S, Danell E (2012) Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, Phlebopus portentosus without host plant. Mycologia 104:597–603. doi:10.3852/11-074

    Article  CAS  PubMed  Google Scholar 

  • Kumla J, Danell E, Lumyong S (2015) Improvement of yield for a tropical black bolete, Phlebopus portentosus, cultivation in northern Thailand. Mycoscience 56:114–117. doi:10.1016/j.myc.2014.04.005

    Article  Google Scholar 

  • Langer I, Krpata D, Peintner U, Wenzel WW, Schweiger P (2008) Media formulation influences in vitro ectomycrrhizal synthesis on the European aspen Populus tremula L. Mycorrhiza 18:297–307. doi:10.1007/s00572-008-0182-5

    Article  CAS  PubMed  Google Scholar 

  • Lei QY, Zhou JJ, Wang QB (2009) Notes on three bolete species from China. Mycosystema 28:56–59

    Google Scholar 

  • Lilleskov E, Hobbie E, Horton T (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183. doi:10.1016/j.funeco.2010.09.008

    Article  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. doi:10.1111/j.1469-8137.2006.01936.x

    Article  CAS  PubMed  Google Scholar 

  • Lumyong S, Sanmee R, Lumyong P (2007) Is large scale cultivation of boletes possible? Opera Mycol 1:34–37

    Google Scholar 

  • Mayor JR, Schuur EAG, Henkel TW (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183. doi:10.1111/j.1461-0248.2008.01265.x

    Article  PubMed  Google Scholar 

  • McKenzie EHC, Buchanan PK, Johnston PR (2000) Checklist of fungi on Nothofagus species in New Zealand. NZ J Bot 38:635–720

    Article  Google Scholar 

  • Miller OK Jr, Lodge DJ, Baroni TJ (2000) New and interesting ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Islands. Mycologia 92:558–570. doi:10.2307/3761516

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant-fungal process. Chapman & Hall, New York, pp 357–423

    Google Scholar 

  • Mortimer PE, Karunarathna SC, Li Q, Gui H, Yang X, Yang X, He J, Ye L, Guo J, Li H, Sysouphanthong P, Zhou D, Xu J, Hyde KD (2012) Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers 56:31–47. doi:10.1007/s13225-012-0196-3

    Article  Google Scholar 

  • Nouhra E, Urcelay C, Becerra A, Dominguez L (2008) Mycorrhizal status of Phlebopus bruchii (Boletaceae): does it form ectomycorrhizas with Fagara coco (Rutaceae)? Symbiosis 46:113–120

    Google Scholar 

  • Ohta A (1994a) Production of fruit-bodies of a mycorrhizal fungus, Lyophyllum shimeji, in pure culture. Mycoscience 35:147–151. doi:10.1007/BF02318492

    Article  Google Scholar 

  • Ohta A (1994b) Some cultural characteristics of mycelia of a mycorrhizal fungus, Lyophyllum shimeji. Mycoscience 35:83–87. doi:10.1007/BF02268533

    Article  Google Scholar 

  • Ohta A (1998) Fruit-body production of two ectomycorrhizal fungi in the genus Hebeloma in pure culture. Mycoscience 39:15–19. doi:10.1007/BF02461573

    Article  Google Scholar 

  • Ohta A, Fujiwara N (2003) Fruit-body production of an ectomycorrhizal fungus in genus Boletus in pure culture. Mycoscience 44:295–300. doi:10.1007/s10267-003-0120-5

    Article  Google Scholar 

  • Paolocci F, Rubini A, Granetti B, Arcioni S (1999) Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizae. FEMS Microbiol Ecol 28:23–30. doi:10.1016/S0168-6496(98)00088-9

    Article  CAS  Google Scholar 

  • Pereira MF, Betancourth BML, Teixeira JA, Zubieta MP, Queiroz MV, Kauya MCM, Costa MD, Araújo EF (2014) In vitro Scleroderma laeve and Eucalyptus grandis mycorrhization and analysis of atp6, 17S rDNA, and ras gene expression during ectomycorrhizal formation. J Basic Microbiol 54:1358–1366. doi:10.1002/jobm.201400253

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. National Research Council Research Press, Ottawa

    Google Scholar 

  • Pham NDH, Yamada A, Shimizu K, Noda K, Dang LAT, Suzuki A (2012) A sheathing mycorrhiza between the tropical bolete Phlebopus spongiosus and Citrus maxima. Mycoscience 53:347–353. doi:10.1007/s10267-011-0177-5

    Article  Google Scholar 

  • Pruett GE, Bruhn JN, Mihail JD (2009) Greenhouse production of burgundy truffle mycorrhizae on oak roots. New For 37:43–52. doi:10.1007/s11056-008-9108-5

    Article  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Repác I (2007) Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum in peat and bark compost substrates. Forestry 5:517–530. doi:10.1093/forestry/cpm036

    Article  Google Scholar 

  • Sanmee R, Dell B, Lumyong P, Izumori K, Lumyong S (2003) Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem 82:527–532. doi:10.1016/S0308-8146(02)00595-2

    Article  CAS  Google Scholar 

  • Sanmee R, Lumyong R, Dell B, Lumyong S (2010) In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edibl ectomycorrhizal fungus in Thailand. Mycoscience 51:15–22. doi:10.1007/s10267-009-0010-6

    Article  Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Singer R, Araujo I, Ivory MH (1983) The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially central Amazonia. Beih. Nova Hedwigia 77:1–352

    Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522. doi:10.1016/S0169-5347(03)00247-7

    Article  Google Scholar 

  • Seitzman BH, Ouimette A, Mixon RL, Hobbie EA, Hibbett DS (2011) Conservation of biotrophy in Hygrophoraceae inferred from combined satble isotope and phylogenetic analyses. Mycologia 103:280–290. doi:10.3852/10-195

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), beta version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112. doi:10.1017/S0269915X05003034

    Article  Google Scholar 

  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH (2003) Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774. doi:10.1046/j.1469-8137.2003.00838.x

    Article  CAS  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. doi:10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  • Theodorou C, Reddell P (1991) In vitro synthesis of ectomycorrhizas on Casuarinaceae with a range of mycorrhizal fungi. New Phytol 118:279–288. doi:10.1111/j.1469-8137.1991.tb00978.x

    Article  Google Scholar 

  • Thoen D, Ducouso M (1989) Mycorrhizal habit and sclerogenesis of Phlebopus sudanicus (Gyrodontaceae) in Senegal. Agric Ecosyst Environ 28:519–523. doi:10.1016/0167-8809(90)90091-Q

    Article  Google Scholar 

  • Thomson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies formultiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  Google Scholar 

  • Thongklang N, Hyde KD, Bussaban B, Lumyong S (2010) Culture condition, inoculum production and host response of a wild mushroom, Phlebopus portentosus strain CMUHH121-005. Maejo Int J Sci Technol 5:413–425

    Google Scholar 

  • Vaario LM, Gill WM, Lapeyrie F, Matsushita N, Suzuki K (2000) Aseptic ectomycorrhizal synthesis between Abies firma and Cenococcum geophilum in artificial cuture. Mycoscience 41:395–399. doi:10.1007/BF02463953

    Article  Google Scholar 

  • Watling R (2001) The relationships and possible distributional patterns of boletes in south-east Asia. Mycol Res 105:1440–1448. doi:10.1017/S0953756201004877

    Article  Google Scholar 

  • Watling R (2006) The sclerodermatoid fungi. Mycoscience 47:18–24. doi:10.1007/s10267-005-0267-3

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylaor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Williams DJ (2004) Mealybugs of southern asia. The Natural History Museum, London, and Southdene SDN, BHD, Kuala Lumpur

  • Wilson AW, Binder M, Hibbett DS (2011) Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evolution 65:1305–1322. doi:10.1111/j.1558-5646.2010.01214.x

    Article  PubMed  Google Scholar 

  • Wilson AW, Hobbie EA, Hibbett DS (2007) The ectomycorrhizal status of Calostoma cinnabarinum determined using isotopic, molecular, and morphological method. Can J Bot 85:385–393. doi:10.1139/B07-026

    Article  CAS  Google Scholar 

  • Yamanaka K, Namba K, Tajiri A (2000) Fruit body formation of Boletus reticulatus in pure culture. Mycoscience 41:189–191. doi:10.1007/BF02464330

    Article  Google Scholar 

  • Yamanaka T, Ota Y, Konno M, Kawai M, Ohta A, Neda H, Terashima Y, Yamada A (2014) The host range of conifer-associatied Tricholoma matsutake, Fagaceae-assoviated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycologia 106:397–406. doi:10.3852/13-197

    Article  PubMed  Google Scholar 

  • Zeller B, Brechet C, Maurice J-P, Le Tacon F (2007) 13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Ann For Sci 64:419–429. doi:10.1051/forest:2007019

    Article  CAS  Google Scholar 

  • Zhang CX, He MX, Cao Y, Liu J, Gao F, Wang WB, Ji KP, Shao SC, Wang Y (2015) Fungus-insect gall of Phlebopus portentosus. Mycologia 107:12–20. doi:10.3852/13-267

    Article  PubMed  Google Scholar 

  • Zhang CX, Ji KP, He MX, Cao Y, Liu J, Wang WB (2010) Analysis on nutrient components of Phlebopus portentosus fruit bodies. J Yunnan Univ 32:702–704

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Thailand Research Fund for The Royal Golden Jubilee Ph.D. Program (PHD/0309/2550) and Research Team Association Grant RTA5580007, and Chiang Mai University, Thailand, and grant IOS-0843366 to Erik Hobbie from the US National Science Foundation. We thank Andrew Wilson and Jesse Sadowsky for very useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saisamorn Lumyong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumla, J., Hobbie, E.A., Suwannarach, N. et al. The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis. Mycorrhiza 26, 333–343 (2016). https://doi.org/10.1007/s00572-015-0672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0672-1

Keywords

Navigation