Skip to main content
Log in

Fundus vessel structure segmentation based on Bel-Hat transformation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Retinal diseases such as Diabetic Retinopathy (DR), Hypertensive Retinopathy (HR), different types of Occlusions, etc., are associated with the deformity observed in the Retinal Vessel Structure (RVS). This paper proposes an automatic unsupervised vessel segmentation technique to separate the RVS with insignificant change in curvature of the vessel and eliminate the noises from the vessel structure and the background. The method involves three phases: preprocessing, where the fundus image is enhanced based on local information, and the noises are separated from the vessels. The second phase introduces a unique Bel–Hat transformation, which simultaneously uses two different groups of Structural Elements: the Neighbor Adaptive Line Structuring Element (NALSE) and the 2D Gaussian Structuring Element (2DGSE). These combined groups of Structural Elements can separate the vessel structure from the background by changing the size and orientation of the Structural Elements. Lastly, a novel robust statistical threshold is used, based on the statistical distribution of the area of the isolated objects, to segment the accurate noise-free Retinal Vessel Structure (RVS). This proposed method is more accurate than the recently proposed unsupervised and supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

It does not apply to this paper because all the given databases are freely available.

References

  • Abdushkour H, Soomro TA, Ali A, Ali Jandan F, Jelinek H, Memon F, Althobiani F, Mohammed Ghonaim S, Irfan M (2023) Enhancing fine retinal vessel segmentation: morphological reconstruction and double thresholds filtering strategy. PLoS ONE 18(7):e0288792. https://doi.org/10.1371/journal.pone.0288792

    Article  Google Scholar 

  • Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Trans Med Imaging 1(3):169–208

    Google Scholar 

  • Almotiri J, Elleithy K, Elleithy A (2018) Retinal vessels segmentation techniques and algorithms: a survey. Appl Sci 8(2):155

    Article  Google Scholar 

  • Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK (2019) Recurrent residual U-Net for medical image segmentation. J Med Imag 6(01):1

    Article  Google Scholar 

  • Annunziata R, Garzelli A, Ballerini L, Mecocci A, Trucco E (2016) Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Inform 20(4):1129–1138

    Article  Google Scholar 

  • Aslani S, Sarnel H (2016) A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control 30:1–12

    Article  Google Scholar 

  • Aurangzeb K, Alharthi RS, Haider SI, Alhussein M (2022) An Efficient and Light Weight Deep Learning Model for Accurate Retinal Vessels Segmentation. IEEE Access. 11:23107–23118

    Article  Google Scholar 

  • Azzopardi G, Petkov N (2013) Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recogn Lett 34(8):922–933

    Article  Google Scholar 

  • Bibiloni P, González-Hidalgo M, Massanet S (2019) A realtime fuzzy morphological algorithm for retinal vessel segmentation. J Real-Time Image Proc 16:2337–2350

    Article  Google Scholar 

  • Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269

    Article  Google Scholar 

  • Cheng E, Du L, Wu Y, Zhu YJ, Megalooikonomou V, Ling H (2014) Discriminative vessel segmentation in retinal images by fusing context aware hybrid features. Mach vis Appl 25(7):1779–1792

    Article  Google Scholar 

  • Deari S, Oksuz I, Ulukaya S (2023) Block Attention and Switchable Normalization Based Deep Learning Framework for Segmentation of Retinal Vessels. IEEE Access 11:38263–38274

    Article  Google Scholar 

  • Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X (2019) A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images. IEEE Trans Image Process 28(5):2367–2377

    Article  MathSciNet  Google Scholar 

  • Fan Z, Mo J (2016) Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In: Proceedings of the International Conference on Machine Learning and Cybernetics, vol. 2. IEEE, pp 849–856

  • Fan Z, Mo J, Qiu B (2020) Accurate Retinal Vessel Segmentation via Octave Convolution Neural Network. arXiv:1906.12193v8 [eess.IV]

  • Farnell DJ, Hatfield F, Knox P, Reakes M, Spencer S, Parry D, Harding S (2008) Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Frankl Inst 345:748–765

    Article  Google Scholar 

  • Fathi A, Naghsh-Nilchi AR (2014) General rotation-invariant local binary patterns operator with application to blood vessel detection in retinal images. Pattern Anal Appl 17(1):69–81

    Article  MathSciNet  Google Scholar 

  • Fattal R (2009) Edge-avoiding wavelets and their applications. A.C.M. Transactions on Graphics (Proc. SIGGRAPH) 28. 3

  • Franklin SW, Raja SE (2014) Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal Images. Biocybern Biomed Eng 34:117–124

    Article  Google Scholar 

  • Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Article  Google Scholar 

  • Fraz MM, Rudnicka AR, Owen CG, Barman SA (2014) Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. Int J Comput Assist Radiol Surg 9(5):795–811

    Article  Google Scholar 

  • GeethaRamani R, Balasubramanian L (2016) Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybernetics and Biomedical Engineering 36(1):102–118

    Article  Google Scholar 

  • Gou D, Wei Y, Fu H, Yan N (2018) Retinal vessel extraction using dynamic multiscale matched filtering and dynamic threshold processing based on histogram fitting. Mach vis Appl 29(4):655–666

    Article  Google Scholar 

  • Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans Med Imaging 19:203–210

    Article  Google Scholar 

  • Khan KB, Khaliq AA, Jalil A et al (2019) A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Anal Appl 22(3):767–802

    Article  MathSciNet  Google Scholar 

  • Kolar R, Kubena T, Cernosek P, Budai A, Hornegger J, Gazarek J, Svoboda O, Jan J, Angelopoulou E, Odstrcilik J (2013) Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IE Image Process. 7(4):373–383

    Article  MathSciNet  Google Scholar 

  • Li Y, Sharan L, Adelson EH (2005) Compressing and companding high dynamic range images with subband architectures. A.C.M. Trans Graph (Proc. SIGGRAPH) 24(3)

  • Lupascu CA, Tegolo D, Trucco E (2010) FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 14(5):1267–1274

    Article  Google Scholar 

  • Marín D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30:146–158. https://doi.org/10.1109/TMI.2010.2064333

    Article  Google Scholar 

  • Memari N, Ramli AR, Saripan MIB, Mashohor S, Moghbel M (2017) Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PLoS ONE 12(12):e188393

    Article  Google Scholar 

  • Mo J, Zhang L (2017) Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg 12(12):2181–2193

    Article  Google Scholar 

  • Mondal R, Chatterjee RK, Kar A (2017) Segmentation of Retinal Blood Vessels Using Adaptive Noise Island Detection. In: Fourth International Conference on Image Information Processing (ICIIP)

  • Nandy RS, Chatterjee RK, Das A (2021) Segmentation of retinal blood vessel structure based on statistical distribution of the area of isolated objects. Recent Trends in Computational Intelligence Enabled Research. Academic Press, New York, pp 263–278

    Chapter  Google Scholar 

  • Nandy RS, Chatterjee RK, Das A (2020) Segmentation of Blood Vessels from Fundus Image Using Scaled Grid. Machine Learning, Image Processing, Network Security and Data Sciences. MIND. Communications in Computer and Information Science. vol 1240. Springer, Singapore. https://doi.org/10.1007/978-981-15-6315-7_18

  • Niemeijer MJJ, Staal J, van Ginneken B et al (2004) Comparative study on retinal vessel segmentation methods on a new publicly available database. SPIE 2004:648–656

    Google Scholar 

  • Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, Cernosek P, Svoboda O, Angelopoulou E (2013) Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 7:373–383

    Article  MathSciNet  Google Scholar 

  • Oliveira WS, Teixeira JV, Ren TI, Cavalcanti GD, Sijbers J (2016) Unsupervised retinal vessel segmentation using combined filters. PLoS ONE 11(2):e149943

    Article  Google Scholar 

  • Orlando JI, Prokofyeva E, Blaschko MB (2016) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans Biomed Eng 64(1):16–27

    Article  Google Scholar 

  • Orlando JI, Blaschko M (2014) Learning fully-connected C.R.F.s for blood vessel segmentation in retinal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 634–641

  • Otsu N (1979) A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-oldchildren: validation of the computer-assisted image analysis of the retina(Caiar) program. Invest Ophthalmol vis Sci 50:2004–2010

    Article  Google Scholar 

  • Paris S, Hasinoff SW, Kautz J (2015) Local Laplacian Filters: Edge-aware Image Processing with a Laplacian Pyramid. ACM Trans Graph. 58(3):81–91

    Google Scholar 

  • Patton N et al (2006) Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res 25:99–127

    Article  Google Scholar 

  • Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Article  Google Scholar 

  • Roychowdhury S, Koozekanani DD, Parhi KK (2014) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inform 19(3):1118–1128

    Google Scholar 

  • Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative Vessel Segmentation of Fundus Images. IEEE Trans Biomed Eng 62(7):1738–1749

    Article  Google Scholar 

  • Sathananthavathi V, Indumathi G (2021) Encoder enhanced atrous (EEA) unet architecture for retinal blood vessel segmentation. Cognit Syst Res 67:84–95

    Article  Google Scholar 

  • Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  • Tang S, Lin T, Yang J, Fan J, Ai D, Wang Y (2015) Retinal vessel segmentation using supervised classification based on multiscale vessel filtering and Gabor wavelet. J Med Imag Health Inform 5(7):1571–1574

    Article  Google Scholar 

  • Thangaraj S, Periyasamy V, Balaji R (2017) Retinal vessel segmentation using neural network. IET Image Process 12(5):669–678

    Article  Google Scholar 

  • Vega R, Sanchez-Ante G, Falcon-Morales LE, Sossa H, Guevara E (2015) Retinal vessel extraction using Lattice Neural Networks with dendritic processing. Comput Biol Med 58:20–30

    Article  Google Scholar 

  • Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J (2021) SCS-Net: Ascale and context sensitive network for retinal vessel segmentation. Med Image Anal 70:102025

    Article  Google Scholar 

  • Yan Z, Yang X, Cheng KTT (2019) A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J Biomed Health Inform 23(4):1427–1436

    Article  Google Scholar 

  • Yue K, Zou B, Chen Z, Liu Q (2018) Improved multiscale line detection method for retinal blood vessel segmentation. IET Image Process 12(8):1450–1457

    Article  Google Scholar 

  • Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019

    Article  Google Scholar 

  • Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438–445

    Article  Google Scholar 

Download references

Funding

No funding was available for the research work.

Author information

Authors and Affiliations

Authors

Contributions

RSN: survey, conceptualization, algorithm development and coding, data analysis, writing the original draft; RKC: conceptualization, algorithm development, supervision, reviewing, correcting, and editing the draft; AD: supervision, motivation, revision, and editing.

Corresponding author

Correspondence to Rohit Kamal Chatterjee.

Ethics declarations

Conflict of interest

All authors proclaimed that this proposed work has no personal relations or financial interests which can influence it.

Consent for publication

All of the authors give their full consent for the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, R.S., Chatterjee, R.K. & Das, A. Fundus vessel structure segmentation based on Bel-Hat transformation. Microsyst Technol 30, 439–453 (2024). https://doi.org/10.1007/s00542-023-05552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-023-05552-4

Navigation