Skip to main content
Log in

General rotation-invariant local binary patterns operator with application to blood vessel detection in retinal images

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The local binary patterns (LBP) operator is a powerful multi-resolution micro-texture descriptor, which can be applied to many image-processing applications. However, existing LBP operators cannot use the information of non-uniform patterns efficiently. This paper presents a general extension of LBP operator to extract all uniform and non-uniform pattern types by using suitable rotation-invariant labeling scheme. Since the proposed LBP operator can extract all micro-texture structures, we combined it with artificial neural networks (ANN) to present a new supervised technique for automatic blood vessel enhancement and detection. The thin and thick blood vessels are detected by applying proper top-hat transform and length filtering on the enhanced blood vessels. The performance of the proposed method is evaluated on manually labeled images of the publicly available DRIVE and STARE databases and compared with several state-of-the-art approaches. The obtained results show the high accuracy of the proposed method on detecting thin and thick blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ertuzun A, Ercil A (2000) An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image Vis Comput 18:543–553

    Article  Google Scholar 

  2. Liu CC, Chuang KW (2009) An outdoor time scenes simulation scheme based on support vector regression with radial basis function on DCT domain. Image Vis Comput 27(10):1626–1636

    Article  Google Scholar 

  3. Melendez J, Garcia MA, Puig D (2008) Efficient distance-based per-pixel texture classification with Gabor wavelet filters. Pattern Anal Appl 11(3–4):365–372

    Article  MathSciNet  Google Scholar 

  4. Arivazhagan S, Ganesan L (2003) Texture classification using Gabor wavelet based rotation invariant features. Pattern Recognit Lett 27:1976–1982

    Article  Google Scholar 

  5. Faizal M, Fauzi A, Lewis PH (2008) A multiscale approach to texture-based image retrieval. Pattern Anal Appl 11(2):141–157

    Article  MathSciNet  Google Scholar 

  6. Hu R, Fahmy MM (1992) Texture segmentation based on a hierarchical Markov random field model. Signal Process 26(3):285–305

    Article  Google Scholar 

  7. Côco KF, Salles EOT, Sarcinelli-Filho M (2007) Topographic independent component analysis based on fractal theory and morphology applied to texture segmentation. Signal Process 87(8):1966–1977

    Article  MATH  Google Scholar 

  8. Randen T, Husoy J (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310

    Article  Google Scholar 

  9. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distribution. Pattern Recogn 29:51–59

    Article  Google Scholar 

  10. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  11. Zhang W, Shan S, Qing L, Chen X, Gao W (2009) Are gabor phases really useless for face recognition? Pattern Anal Appl 12(3):301–307

    Article  MathSciNet  Google Scholar 

  12. Shan C, Gong S, McOwan PW (2009) Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis Comput 27:803–816

    Article  Google Scholar 

  13. Lucieer A, Stein A, Fisher P (2005) Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty. Int J Remote Sens 26(14):2917–2936

    Article  Google Scholar 

  14. Nanni L, Lumini A (2008) Local binary patterns for a hybrid fingerprint matcher. Pattern Recogn 41:3461–3466

    Article  MATH  Google Scholar 

  15. Maenpaa T, Viertola J, Pietikainen M (2003) Optimising colour and texture features for real-time visual inspection. Pattern Anal Appl 6(3):169–175

    Article  MathSciNet  Google Scholar 

  16. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  17. Leung H, Wang JJ, Rochtchina E, Wong TY, Klein R, Mitchell P (2003) Impact of current and past blood pressure on retinal arteriolar diameter in older population. J Hypertens:1543–1549

  18. Niemeijer M, Staal JJ, VanGinneken B, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. SPIE Med Imaging 5370:648–656

    Google Scholar 

  19. Wang JJ, Taylor B, Wong TY, Chua B, Rochtchina E, Klein R, Mitchell P (2006) Retinal vessel diameters and obesity: a population-based study in older persons. Obes Res:206–214

  20. Lam BSY, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381

    Article  Google Scholar 

  21. Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213

    Article  Google Scholar 

  22. Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019

    Article  MATH  Google Scholar 

  23. Jiang X, Mojon D (2003) Adaptive local thresholding by verification based multi threshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137

    Article  Google Scholar 

  24. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269

    Article  Google Scholar 

  25. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40:438–445

    Article  Google Scholar 

  26. Narasimha-Iyer H, Mahadevan V, Beach JM, Roysam B (2008) Improved detection of the central reflex in retinal vessels using a generalized dual-Gaussian model and robust hypothesis testing. IEEE Trans Inf Technol Biomed 12(3):406–410

    Article  Google Scholar 

  27. Zhou L, Rzeszotarsk MS, Singerman LJ, Chokreff JM (1994) The detection and quantification of retinopathy using digital angiograms. IEEE Trans Med Imaging 13(4):619–626

    Article  Google Scholar 

  28. Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N (2010) Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed. doi:10.1016/j.cmpb.2010.03.004

  29. Adel M, Moussaoui A, Rasigni M, Bourennane S, Hamami L (2010) Statistica-based tracking technique for linear structures detection: application to vessel segmentation in medical images. IEEE Signal Process Lett 17(6):555–558

    Article  Google Scholar 

  30. Solouma NH, Youssef ABM, Badr YA, Chapman N, Thom S (2000) Quantification and characterization of arteries in retinal images. Comput Methods Programs Biomed 49(9):1059–1067

    Google Scholar 

  31. Palomera-Perez MA, Martinez-Perez ME, Benitez-Perez H, Ortega-Arjona JL (2010) Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. Inf Technol Biomed 14(2):500–506

    Article  Google Scholar 

  32. Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11(1):47–61

    Article  Google Scholar 

  33. Perfetti R, Ricci E, Casali D, Costantini G (2007) Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans Circuits Sys II 54:141–145

    Article  Google Scholar 

  34. Soares JVB, Leandro JJG, Cesar RM Jr, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222

    Article  Google Scholar 

  35. Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, VanGinneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  36. Supot S, Thanapong C, Chuchart P, manas S (2007) Automatic segmentation of blood vessels in retinal images based on Fuzzy K-Median clustering. Proceedings of the IEEE International Conference on Integration Technology, Shenzhen, China pp 584–588

  37. Garg S, Sivaswamy J, Chandra S (2007) Unsupervised curvature-based retinal vessel segmentation. Proceedings of the IEEE International Symposium on Bio-Medical Imaging pp 344–347

  38. Zhou H, Wang R, Wang C (2008) A novel extended local-binary-pattern operator for texture analysis. Inf Sci 178:4314–4325

    Article  MATH  Google Scholar 

  39. Heikkila M, Pietikainena M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42:425–436

    Article  Google Scholar 

  40. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  41. Brodatz P (1966) Textures: a photographic album for artists and designers, Dover

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhossein Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, A., Naghsh-Nilchi, A.R. General rotation-invariant local binary patterns operator with application to blood vessel detection in retinal images. Pattern Anal Applic 17, 69–81 (2014). https://doi.org/10.1007/s10044-011-0257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0257-3

Keywords

Navigation