Skip to main content
Log in

VIRMA facilitates intrahepatic cholangiocarcinoma progression through epigenetic augmentation of TMED2 and PARD3B mRNA stabilization

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

N6-methyladenine modification of RNA, a critical component of the regulatory role at the post-transcriptional level, has a crucial effect on tumor development and progression. vir-Like m6A methyltransferase associated (VIRMA) has been recently discovered as an N6-methyladenine methyltransferase; however, its specific role in intrahepatic cholangiocarcinoma (ICC) remains to be investigated in-depth.

Methods

VIRMA expression and its association with clinicopathological characteristics were evaluated using The Cancer Genome Atlas (TCGA) dataset and tissue microarrays. In vivo and in vitro assays were performed to determine the role of VIRMA in ICC proliferation and metastasis. The underlying mechanism by which VIRMA influences ICC was clarified by RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), SLAM sequencing (SLAM-seq), RNA immunoprecipitation, a luciferase reporter assay, and chromatin immunoprecipitation assay.

Results

VIRMA showed high expression in ICC tissues, and this finding predicted a dismal prognostic outcome. The high expression of VIRMA in ICC was due to the demethylation of H3K27me3 modification in the promoter region. Functionally, VIRMA is required for the endothelial–mesenchymal transition (EMT) process in ICC cells, as shown by multiple ICC models in in vitro and in vivo experiments. Mechanistically, multi-omics analysis using ICC cells demonstrated that TMED2 and PARD3B were the direct downstream target of VIRMA. The methylated TMED2 and PARD3B transcripts were directly recognized by HuR, which exerted stabilizing effects on its bound RNA. VIRMA-induced expression of TMED2 and PARD3B activated the Akt/GSK/β-catenin and MEK/ERK/Slug signaling pathways, thereby promoting ICC proliferation and metastasis.

Conclusions

The present study showed that VIRMA plays a critical role in ICC development by stabilizing TMED2 and PARD3B expression through the m6A–HuR-mediated mechanism. Thus, demonstrating VIRMA and its pathway as candidate therapeutic targets for ICC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICC:

Intrahepatic cholangiocarcinoma

TCGA:

The Cancer Genome Atlas

RT-qPCR:

Quantitative reverse transcription polymerase chain reaction

DMSO:

Dimethyl sulfoxide

RNA-seq:

RNA sequencing

MeRIP-seq:

Methylated RNA immunoprecipitation sequencing

SLAM-seq:

Thiol (SH)-linked alkylation for metabolic sequencing of RNA

EMT:

Endothelial–mesenchymal transition

HuR:

Hu-antigen R

RIP:

RNA immunoprecipitation

ChIP:

Chromatin immunoprecipitation

References

  1. Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557–88.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7:1116–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sirica AE, Gores GJ, Groopman JD, et al. Intrahepatic cholangiocarcinoma: continuing challenges and translational advances. Hepatology. 2019;69:1803–15.

    Article  PubMed  Google Scholar 

  4. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  8. Cui YH, Yang S, Wei J, et al. Autophagy of the m(6)A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 2021;12:2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng P, Chen D, Wang X, et al. Inhibition of the m(6)A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 2022;36:2180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng Q, Hou J, Zhou Y, et al. The RNA helicase DDX46 inhibits innate immunity by entrapping m(6)A-demethylated antiviral transcripts in the nucleus. Nat Immunol. 2017;18:1094–103.

    Article  CAS  PubMed  Google Scholar 

  14. Shulman Z, Stern-Ginossar N. The RNA modification N(6)-methyladenosine as a novel regulator of the immune system. Nat Immunol. 2020;21:501–12.

    Article  CAS  PubMed  Google Scholar 

  15. Ma S, Yan J, Barr T, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med. 2021;218:e20210279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deng X, Su R, Weng H, et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18:103.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, Shi M, He X, et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2022;15:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song H, Song J, Cheng M, et al. METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 2021;12:5522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hou J, Zhang H, Liu J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer. 2019;18:163.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu W, Wang JZ, Wei JF, et al. Role of m6A methyltransferase component VIRMA in multiple human cancers (review). Cancer Cell Int. 2021;21:172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang C, Sun Q, Zhang X, et al. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun. 2022;42:609–26.

    Article  CAS  Google Scholar 

  25. Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019;18:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu Y, Chen Y, Yao Y, et al. VIRMA contributes to non-small cell lung cancer progression via N(6)-methyladenosine-dependent DAPK3 post-transcriptional modification. Cancer Lett. 2021;522:142–54.

    Article  CAS  PubMed  Google Scholar 

  27. Herzog VA, Reichholf B, Neumann T, et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods. 2017;14:1198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang Y, Zhang H, Wang L, et al. JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nat Commun. 2020;11:5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi-Peng G, Chun-Lin C, Huan W, et al. TMED2 promotes epithelial ovarian cancer growth. Oncotarget. 2017;8:94151–65.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun MS, Zhang J, Jiang LQ, et al. TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking. Cell Rep. 2018;25:3086-98.e3.

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Li S, Wu Y, et al. The circular RNA CDR1as regulate cell proliferation via TMED2 and TMED10. BMC Cancer. 2020;20:312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang JD, Chen JT, Liu SH, et al. Contribution of the testosterone androgen receptor-PARD3B signaling axis to tumorigenesis and malignance of glioblastoma multiforme through stimulating cell proliferation and colony formation. J Clin Med. 2022;11:4818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18:112.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhu W, Wang JZ, Wei JF, et al. Role of m6A methyltransferase component VIRMA in multiple human cancers (review). Cancer Cell Int. 2021;17(21):172.

    Article  Google Scholar 

  36. Pang B, Wu N, Guan R, et al. Overexpression of RCC2 enhances cell motility and promotes tumor metastasis in lung adenocarcinoma by inducing epithelial-mesenchymal transition. Clin Cancer Res. 2017;23:5598–610.

    Article  CAS  PubMed  Google Scholar 

  37. Chen Q, Jiang P, Jia B, et al. Correction to: RCC2 contributes to tumor invasion and chemoresistance to cisplatin in hepatocellular carcinoma. Hum Cell. 2021;34:706–10.

    Article  PubMed  Google Scholar 

  38. Wu N, Ren D, Li S, et al. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation. BMC Cancer. 2018;18:67.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu Q, Liu F, Ge M, et al. BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression. Oncogene. 2022;41:347–60.

    Article  CAS  PubMed  Google Scholar 

  40. Klutho PJ, Costanzo-Garvey DL, Lewis RE. Regulation of glucose homeostasis by KSR1 and MARK2. PLoS ONE. 2011;6:e29304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin J, Hou KK, Piwnica-Worms H, et al. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J Immunol. 2009;183:1215–21.

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Jin H, Wang N, et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3β/β-catenin signaling. Theranostics. 2016;6:1205–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  44. Wang Y, Li Y, Toth JI, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia Z, Tang M, Ma J, et al. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res. 2021;21(49):7361–74.

    Article  Google Scholar 

  46. Zhang C, Chen Y, Sun B, et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature. 2017;549:273–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (82272103, 82230067), the Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment (2021B1212040004), the Natural Science Foundation of Guangdong Province of China (2022B1515020010), and Scientific Research Foundation of Guangdong Medical University of China (2021113808, 2021093728).

Author information

Authors and Affiliations

Authors

Contributions

The studies were designed by MXZ, HFX, KH, XWL, and BL. Experiments were performed by HFX, XWL, ZLL, and KH. Dara analysis was carried out by HFX, XWL, ZLL, KH, BL, XH, YL, LGL, and LGQ. The manuscript was written by HFX and XWL, and revised by HFX, XWL, and KH. All authors revised and approved the manuscript.

Corresponding authors

Correspondence to Meixiao Zhan or Ke He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Lin, X., Li, Z. et al. VIRMA facilitates intrahepatic cholangiocarcinoma progression through epigenetic augmentation of TMED2 and PARD3B mRNA stabilization. J Gastroenterol 58, 925–944 (2023). https://doi.org/10.1007/s00535-023-02015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-02015-5

Keywords

Navigation