Skip to main content

Advertisement

Log in

Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species–area relationship, and hence, that environmental heterogeneity is a principal driver of freshwater mollusk richness on a continental scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aho J (1978) Freshwater snail populations and the equilibrium theory of island biogeography. I. A case study in southern Finland. Ann Zool Fenn 15:146–154

    Google Scholar 

  • Bauer FU, Glasmacher UA, Ring U, Schumann A, Nagudi B (2010) Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci 99:1575–1597. doi:10.1007/s00531-010-0549-7

    Article  Google Scholar 

  • Bauer FU, Karl M, Glasmacher UA, Nagudi B, Schumann A, Mroszewski L (2012) The Rwenzori Mountains of western uganda: aspects on the evolution of their remarkable morphology within the Albertine Rift. J Afr Earth Sci 73–74:44–56. doi:10.1016/j.jafrearsci.2012.07.001

    Article  Google Scholar 

  • Beadle L (1981) The inland waters of tropical Africa-An introduction to tropical limnology, 2nd edn. Longman, London

    Google Scholar 

  • Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA, Gruber B, Hof C, Jansen F, Knapp S, Kreft H, Schneider A-K, Winter M, Dormann CF (2012) What’s on the horizon for macroecology? Ecography 35:673–683. doi:10.1111/j.1600-0587.2012.07364.x

    Article  Google Scholar 

  • Bogan AE (2008) Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K (eds) freshw. Anim. Divers. Assess, Springer, pp 139–147

    Google Scholar 

  • Bößneck U (2012) Leben am Limit: Besiedlung von Süßwasser-Habitaten extremer Hochlagen Asiens, Amerikas und Afrikas durch Mollusken (Mollusca: Bivalvia & Gastropoda). In: Hartmann M, Weipert J (eds) Biodiversität Naturausstattung Im Himalaya IV - Biodivers. Nat. Herit. Himalaya IV. Verein der Freunde & Förderer des Naturkundemuseums Erfurt e.V, Erfurt, pp 103–106

    Google Scholar 

  • Brown DS (1994) Freshwater snails of Africa and their medical importance. Taylor & Francis, UK

    Google Scholar 

  • Cahill AE, Aiello-Lammens ME, Caitlin Fisher-Reid M, Hua X, Karanewsky CJ, Ryu HY, Sbeglia GC, Spagnolo F, Waldron JB, Wiens JJ (2014) Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J Biogeogr 41:429–442. doi:10.1111/jbi.12231

    Article  Google Scholar 

  • Cardinale BJ, Bennett DM, Nelson CE, Gross K (2009) Does productivity drive diversity or vice versa? A test of the multivariate productivity-diversity hypothesis in streams. Ecology 90:1227–1241. doi:10.1890/08-1038.1

    Article  Google Scholar 

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2009) Impact of African orography and the Indian summer monsoon on the low-level somali jet. Int J Climatol 29:983–992. doi:10.1002/joc.1720

    Article  Google Scholar 

  • Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Pollock C, Richman NI, Soulsby A-M, Böhm M (2014) Global patterns of freshwater species diversity, threat and endemism. Glob Ecol Biogeogr 23:40–51. doi:10.1111/geb.12096

    Article  Google Scholar 

  • Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport Effect. Am Nat 144:570–595

    Article  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76. doi:10.1016/S0169-5347(99)01767-X

    Article  Google Scholar 

  • Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163:E1–E23. doi:10.1086/382056

    Article  Google Scholar 

  • Colwell RK, Gotelli NJ, Rahbek C, Entsminger GL, Farrell C, Graves GR (2009) Peaks, plateaus, canyons, and craters: the complex geometry of simple mid-domain effect models. Evol Ecol Res 11:355–370

    Google Scholar 

  • Cotterill FPD, Wit MJD (2011) Geoecodynamics and the Kalahari epeirogeny: linking its genomic record, tree of life and palimpsest into a unified narrative of landscape evolution. South Afr J Geol 114:489–514. doi:10.2113/gssajg.114.3-4.489

    Article  Google Scholar 

  • Daget J (1998) Catalogue raisonné des mollusques bivalves d’eau douce africains. Blackhuys Publishers and ORSTOM, Leiden and Paris

  • Damm S, Dijkstra K-DB, Hadrys H (2010) Red drifters and dark residents: the phylogeny and ecology of a Plio-Pleistocene dragonfly radiation reflects Africa’s changing environment (Odonata, Libellulidae, Trithemis). Mol Phylogenet Evol 54:870–882. doi:10.1016/j.ympev.2009.12.006

    Article  Google Scholar 

  • Danley PD, Husemann M, Ding B, DiPietro LM, Beverly EJ, Peppe DJ (2012) The impact of the geologic history and paleoclimate on the diversification of East African cichlids. Int J Evol Biol 2012:1–20. doi:10.1155/2012/574851

    Article  Google Scholar 

  • Darwall WRT, Smith KG, Allen DJ, Holland RA, Harrison IJ, Brooks EGE (2011) The diversity of life in African freshwaters: under water, under threat. An analysis of the status and distribution of freshwater species throughout mainland Africa. IUCN, Gland, Switzerland; Cambridge

  • Davis GM (1982) Historical and ecological factors in the evolution, adaptive radiation, and biogeography of freshwater mollusks. Am Zool 22:375–395. doi:10.1093/icb/22.2.375

    Article  Google Scholar 

  • Day JJ, Peart CR, Brown KJ, Friel JP, Bills R, Moritz T (2013) Continental diversification of an African catfish radiation (Mochokidae: Synodontis). Syst Biol 62:351–365. doi:10.1093/sysbio/syt001

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dehling DM, Hof C, Brändle M, Brandl R (2010) Habitat availability does not explain the species richness patterns of European lentic and lotic freshwater animals. J Biogeogr 37:1919–1926. doi:10.1111/j.1365-2699.2010.02347.x

    Google Scholar 

  • Dias MS, Oberdorff T, Hugueny B, Leprieur F, Jézéquel C, Cornu J-F, Brosse S, Grenouillet G, Tedesco PA (2014) Global imprint of historical connectivity on freshwater fish biodiversity. Ecol Lett 17:1130–1140. doi:10.1111/ele.12319

    Article  Google Scholar 

  • Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Donges JF, Donner RV, Trauth MH, Marwan N, Schellnhuber H-J, Kurths J (2011) Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc Natl Acad Sci 108:20422–20427. doi:10.1073/pnas.1117052108

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147. doi:10.1111/j.1365-2699.2008.01963.x

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi:10.1038/35012228

    Article  Google Scholar 

  • Genner MJ, Knight ME, Haesler MP, Turner GF (2010) Establishment and expansion of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Mol Ecol 19:170–182. doi:10.1111/j.1365-294X.2009.04434.x

    Article  Google Scholar 

  • Glaubrecht M (2008) Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: morphology and systematization of a paludomid species flock in an ancient lake. Zoosystematics Evol 84:71–122. doi:10.1002/zoos.200700016

    Article  Google Scholar 

  • Gotelli NJ, McGill BJ (2006) Null versus neutral models: what’s the difference? Ecography 29:793–800. doi:10.1111/j.2006.0906-7590.04714.x

    Article  Google Scholar 

  • Goudie AS (2005) The drainage of Africa since the Cretaceous. Geomorphology 67:437–456. doi:10.1016/j.geomorph.2004.11.008

    Article  Google Scholar 

  • Graf DL, Cummings KS (2011) Freshwater mussel (Mollusca: Bivalvia: Unionoida) richness and endemism in the ecoregions of Africa and Madagascar based on comprehensive museum sampling. Hydrobiologia 678:17–36. doi:10.1007/s10750-011-0810-5

    Article  Google Scholar 

  • Graf D, Jørgensen A, Van Damme D, Kristensen TK (2011) The status and distribution of freshwater molluscs (Mollusca). The Status and Distribution of Freshwater Biodiversity in Central Africa. Cambridge, UK and Gland, Switzerland IUCN, pp 48–61

  • Hargreaves AL, Samis KE, Eckert CG (2014) Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am Nat 183:157–173. doi:10.1086/674525

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi:10.1890/03-8006

    Article  Google Scholar 

  • Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722. doi:10.1111/j.1365-2427.2011.02610.x

    Article  Google Scholar 

  • Hijmans RJ (2014) raster: geographic data analysis and modeling. R package version 2.2-31. http://CRAN.R-project.org/package=raster

  • Hof C, Brändle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Glob Ecol Biogeogr 17:539–546. doi:10.1111/j.1466-8238.2008.00394.x

    Article  Google Scholar 

  • Holt BG, Lessard J-P, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P-H, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C (2013) An update of Wallace’s zoogeographic regions of the world. Science 339:74–78. doi:10.1126/science.1228282

    Article  Google Scholar 

  • Hoorn C, Mosbrugger V, Mulch A, Antonelli A (2013) Biodiversity from mountain building. Nat Geosci 6:154. doi:10.1038/ngeo1742

    Google Scholar 

  • Hortal J, Triantis KA, Meiri S, Thébault E, Sfenthourakis S (2009) Island species richness increases with habitat diversity. Am Nat 174:E205–E217. doi:10.1086/645085

    Article  Google Scholar 

  • Hurlbert AH, Stegen JC (2014) When should species richness be energy limited, and how would we know? Ecol Lett 17:401–413. doi:10.1111/ele.12240

    Article  Google Scholar 

  • Hutter CR, Guayasamin JM, Wiens JJ (2013) Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol Lett 16:1135–1144. doi:10.1111/ele.12148

    Article  Google Scholar 

  • Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proc Natl Acad Sci 98:5661–5666. doi:10.1073/pnas.091100998

    Article  Google Scholar 

  • Kaspar F, Prömmel K, Cubasch U (2010) Impacts of tectonic and orbital forcing on East African climate: a comparison based on global climate model simulations. Int J Earth Sci 99:1677–1686. doi:10.1007/s00531-010-0538-x

    Article  Google Scholar 

  • Keil P, Simova I, Hawkins BA (2008) Water-energy and the geographical species richness pattern of European and North African dragonflies (Odonata). Insect Conserv Divers 1:142–150. doi:10.1111/j.1752-4598.2008.00019.x

    Article  Google Scholar 

  • Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeogr 37:2029–2053. doi:10.1111/j.1365-2699.2010.02375.x

    Article  Google Scholar 

  • Kruschke JK (2011) Doing Bayesian data analysis: a tutorial with R and BUGS. Academic Press, Burlington

    Google Scholar 

  • Kruschke JK (2013) Bayesian estimation supersedes the t test. J Exp Psychol Gen 142:573–603. doi:10.1037/a0029146

    Article  Google Scholar 

  • Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Dürr HH, Brosse S, Oberdorff T (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol Lett 14:325–334. doi:10.1111/j.1461-0248.2011.01589.x

    Article  Google Scholar 

  • Levinsky I, Araújo MB, Nogués-Bravo D, Haywood AM, Valdes PJ, Rahbek C (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. Glob Ecol Biogeogr 22:351–363. doi:10.1111/geb.12045

    Article  Google Scholar 

  • Li J, He Q, Hua X, Zhou J, Xu H, Chen J, Fu C (2009) Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob Ecol Biogeogr 18:264–272. doi:10.1111/j.1466-8238.2008.00430.x

    Article  Google Scholar 

  • Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr 39:1189–1205. doi:10.1111/j.1365-2699.2012.02728.x

    Article  Google Scholar 

  • Lomolino MV (2010) Biogeography, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Mandahl-Barth G (1988) Studies on African freshwater bivalves. Danish Bilharziasis Laboratory

  • Markovic D, Carrizo S, Freyhof J, Cid N, Lengyel S, Scholz M, Kasperdius H, Darwall W (2014) Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers Distrib 20:1097–1107. doi:10.1111/ddi.12232

    Article  Google Scholar 

  • Maslin MA, Christensen B (2007) Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J Hum Evol 53:443–464. doi:10.1016/j.jhevol.2007.06.005

    Article  Google Scholar 

  • Masutomi Y, Inui Y, Takahashi K, Matsuoka Y (2009) Development of highly accurate global polygonal drainage basin data. Hydrol Process 23:572–584. doi:10.1002/hyp.7186

    Article  Google Scholar 

  • McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31. doi:10.1046/j.0305-0270.2003.00992.x

    Article  Google Scholar 

  • Murphy HT, VanDerWal J, Lovett-Doust J (2011) One, two and three-dimensional geometric constraints and climatic correlates of North American tree species richness. Ecography 34:267–275. doi:10.1111/j.1600-0587.2010.06395.x

    Article  Google Scholar 

  • Oberdorff T, Tedesco PA, Hugueny B, Leprieur F, Beauchard O, Brosse S, Dürr HH (2011) Global and regional patterns in riverine fish species richness: a review. Int J Ecol 2011:e967631. doi:10.1155/2011/967631

    Article  Google Scholar 

  • von Oheimb PV, Albrecht C, Riedel F, Bössneck U, Zhang H, Wilke T (2013) Testing the role of the Himalaya Mountains as a dispersal barrier in freshwater gastropods (Gyraulus spp.). Biol J Linn Soc 109:526–534. doi:10.1111/bij.12068

    Article  Google Scholar 

  • Osorio F, Vallejos R, Cuevas F (2012) SpatialPack: Package for analysis of spatial data. R package version 0.2. http://CRAN.R-project.org/package=SpatialPack

  • Pinel-Alloul B, André A, Legendre P, Cardille JA, Patalas K, Salki A (2013) Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Glob Ecol Biogeogr 22:784–795. doi:10.1111/geb.12041

    Article  Google Scholar 

  • Plummer M (2013) rjags: bayesian graphical models using MCMC. R package version 3-11. http://CRAN.R-project.org/package=rjags

  • Plumptre AJ, Davenport TRB, Behangana M, Kityo R, Eilu G, Ssegawa P, Ewango C, Meirte D, Kahindo C, Herremans M, Peterhans JK, Pilgrim JD, Wilson M, Languy M, Moyer D (2007) The biodiversity of the Albertine Rift. Biol Conserv 134:178–194. doi:10.1016/j.biocon.2006.08.021

    Article  Google Scholar 

  • Ponder WF, Colgan DJ (2002) What makes a narrow-range taxon? Insights from Australian freshwater snails. Invertebr Syst 16:571–582

    Article  Google Scholar 

  • Prömmel K, Cubasch U, Kaspar F (2013) A regional climate model study of the impact of tectonic and orbital forcing on African precipitation and vegetation. Palaeogeogr Palaeoclimatol Palaeoecol 369:154–162. doi:10.1016/j.palaeo.2012.10.015

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing, version 3.0.1. R Foundation for Statistical Computing, Austria, Vienna

    Google Scholar 

  • Rahbek C, Gotelli NJ, Colwell RK, Entsminger GL, Rangel TFLVB, Graves GR (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc R Soc B Biol Sci 274:165–174. doi:10.1098/rspb.2006.3700

    Article  Google Scholar 

  • Ribera I, Vogler AP (2000) Habitat type as a determinant of species range sizes: the example of lotic–lentic differences in aquatic Coleoptera. Biol J Linn Soc 71:33–52. doi:10.1111/j.1095-8312.2000.tb01240.x

    Google Scholar 

  • Roberts EM, Stevens NJ, O’Connor PM, Dirks PHGM, Gottfried MD, Clyde WC, Armstrong RA, Kemp AIS, Hemming S (2012) Initiation of the western branch of the East African Rift coeval with the eastern branch. Nat Geosci 5:289–294. doi:10.1038/ngeo1432

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in situ gauge observations. Proc Second Int Precip Work Group IPWG Monterey Oct 2004 EUMETSAT ISBN92-9110-070-6 231–247 (ISSN1727–432X)

  • Salzburger W, Bocxlaer BV, Cohen AS (2014) The ecology and evolution of the African Great Lakes and their faunas. Annu Rev Ecol Evol Syst 45:519–545. doi:10.1146/annurev-ecolsys-120213-091804

    Article  Google Scholar 

  • Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12:441–447. doi:10.1046/j.1466-822X.2003.00061.x

    Article  Google Scholar 

  • Schneider U, Becker A, Meyer-Christopher A, Ziese M, Rudolf B (2011) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach a. M., Germany, Dec. 2011:1–13

  • Schultheiß R, Bocxlaer BV, Wilke T, Albrecht C (2009) Old fossils–young species: evolutionary history of an endemic gastropod assemblage in Lake Malawi. Proc R Soc B Biol Sci 276:2837–2846. doi:10.1098/rspb.2009.0467

    Article  Google Scholar 

  • Schultheiß R, Ndeo OW, Malikwisha M, Marek C, Bößneck U, Albrecht C (2011a) Freshwater molluscs of the Eastern Congo: notes on taxonomy, biogeography and conservation. Afr Invertebr 52:265–284. doi:10.5733/afin.052.0204

    Article  Google Scholar 

  • Schultheiß R, Wilke T, Jørgensen A, Albrecht C (2011b) The birth of an endemic species flock: demographic history of the Bellamya group (Gastropoda, Viviparidae) in Lake Malawi. Biol J Linn Soc 102:130–143. doi:10.1111/j.1095-8312.2010.01574.x

    Article  Google Scholar 

  • Schultheiß R, Van Bocxlaer B, Riedel F, von Rintelen T, Albrecht C (2014) Disjunct distributions of freshwater snails testify to a central role of the Congo system in shaping biogeographical patterns in Africa. BMC Evol Biol 14:42. doi:10.1186/1471-2148-14-42

    Article  Google Scholar 

  • Schwarzer J, Swartz ER, Vreven E, Snoeks J, Cotterill FPD, Misof B, Schliewen UK (2012) Repeated trans-watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proc R Soc B Biol Sci 279:4389–4398. doi:10.1098/rspb.2012.1667

    Article  Google Scholar 

  • Seddon M, Appleton C, Van Damme D, Graf D (2011) Freshwater molluscs of Africa: diversity, distribution, and conservation. Divers Life Afr Freshw Water Threat Anal Status Distrib Freshw Species Mainl Afr IUCN Camb UK Gland Switz 92–125

  • Šizling AL, Storch D, Keil P (2009) Rapoport’s rule, species tolerances, and the latitudinal diversity gradient: geometric considerations. Ecology 90:3575–3586. doi:10.1890/08-1129.1

    Article  Google Scholar 

  • Sommerfeld A, Prömmel K, Cubasch U (2014) The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification. Int J Earth Sci (Geol Rundsch) 1–16. doi:10.1007/s00531-014-1102-x

  • Stankiewicz J, de Wit MJ (2006) A proposed drainage evolution model for Central Africa—did the Congo flow east? J Afr Earth Sci 44:75–84. doi:10.1016/j.jafrearsci.2005.11.008

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880. doi:10.1111/ele.12277

    Article  Google Scholar 

  • Strong EE, Gargominy O, Ponder WF, Bouchet P (2008) Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K (eds) Freshw. Anim Divers Assess Springer Netherlands, Dordrecht, pp 149–166

  • Tedesco PA, Leprieur F, Hugueny B, Brosse S, Dürr HH, Beauchard O, Busson F, Oberdorff T (2012) Patterns and processes of global riverine fish endemism. Glob Ecol Biogeogr 21:977–987. doi:10.1111/j.1466-8238.2011.00749.x

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino A, Strecker MR (2005) Late Cenozoic moisture history of East Africa. Science 309:2051–2053. doi:10.1126/science.1112964

    Article  Google Scholar 

  • Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio-Pleistocene African climate. Quat Sci Rev 28:399–411. doi:10.1016/j.quascirev.2008.11.003

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino AL, Junginger A, Lesoloyia M, Odada EO, Olago DO, Olaka LA, Strecker MR, Tiedemann R (2010) Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quat Sci Rev 29:2981–2988. doi:10.1016/j.quascirev.2010.07.007

    Article  Google Scholar 

  • Triantis KA, Guilhaumon F, Whittaker RJ (2012) The island species–area relationship: biology and statistics. J Biogeogr 39:215–231. doi:10.1111/j.1365-2699.2011.02652.x

    Article  Google Scholar 

  • Van Bocxlaer B, Damme DV, Feibel CS (2008) Gradual versus punctuated equilibrium evolution in the Turkana Basin molluscs: evolutionary events or biological invasions? Evolution 62:511–520. doi:10.1111/j.1558-5646.2007.00296.x

    Article  Google Scholar 

  • Van Damme D, Pickford M (2003) The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithioidea) of the Albertine Rift Valley (Uganda-Congo) and their bearing on the origin and evolution of the Tanganyikan thalassoid malacofauna. Hydrobiologia 498:1–83. doi:10.1023/A:1026298512117

    Article  Google Scholar 

  • VanDerWal J, Murphy HT, Lovett-Doust J (2008) Three-dimensional mid-domain predictions: geometric constraints in North American amphibian, bird, mammal and tree species richness patterns. Ecography 31:435–449. doi:10.1111/j.0906-7590.2008.05396.x

    Article  Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature. doi:10.1038/nature11144

    Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2014) Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol Lett 17:583–592. doi:10.1111/ele.12260

    Article  Google Scholar 

  • West KA, Michel E, Todd JA, Brown DS, Clabaugh J (2003) The gastropods of Lake Tanganyika: diagnostic key and taxonomic classification with notes on the fauna. Int Asscociation Theor Appl Limnol SIL Occas Publ 2:1–132

    Google Scholar 

  • White JW, Rassweiler A, Samhouri JF, Stier AC, White C (2014) Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123:385–388. doi:10.1111/j.1600-0706.2013.01073.x

    Article  Google Scholar 

  • Whittaker RJ, Nogués-Bravo D, Araújo MB et al (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob Ecol Biogeogr 16:76–89. doi:10.1111/j.1466-8238.2006.00268.x

    Article  Google Scholar 

  • Zagmajster M, Eme D, Fišer C, Galassi D, Marmonier P, Stoch F, Cornu J-F, Malard F (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145. doi:10.1111/geb.12200

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mary Seddon, Annabel Cuttelod, and Dirk Van Damme for introducing us to the IUCN assessment methodology, and thank Dirk Van Damme and an anonymous reviewer for constructive comments. We thank Adrienne Jochum for language editing. C.A. gratefully acknowledges grants from the German Research Foundation (AL 1076/6-2, 7-1, 8-1; part of the DFG research unit 703 RiftLink), and the work was further supported by Postdoctoral Fellowships of the Alexander von Humboldt Foundation and the Flanders Research Foundation to B.V.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Hauffe or C. Albrecht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauffe, T., Schultheiß, R., Van Bocxlaer, B. et al. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa. Int J Earth Sci (Geol Rundsch) 105, 1795–1810 (2016). https://doi.org/10.1007/s00531-014-1109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1109-3

Keywords

Navigation