Skip to main content

Advertisement

Log in

Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbate E, Balestrieri ML, Bigazzi G (2002) Morphostructural development of the Eritrean rift flank (southern Red Sea) inferred from apatite fission track analysis. J Geophys Res 107:2319–2331

    Article  Google Scholar 

  • Abeinomugisha D, Mugisha F (2004) Structural analysis of the Albertine graben, Western Uganda. Abstract, East African rift System Evolution, Resources and Environmental Conference, Addis Abeba, June 2004

  • Ahnert F (2003) Einführung in die Geomorphologie. Ulmer, Stuttgart

    Google Scholar 

  • Bahat D, Mohr P (1987) Horst faulting in continental rifts. Tectonophysics 141:61–73

    Article  Google Scholar 

  • Batt GE, Brandon MT (2002) Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings. Tectonophysics 349(1–4):185–201

    Article  Google Scholar 

  • Bauer FU, Karl M, Glasmacher UA, Nagudi B, Andreas S, Mroszewski L (in review) The Rwenzori Mountains of western Uganda–an approach to unravel the evolution of a remarkable morphological feature within the Albertine Rift. Submitted to J Afr Earth Sci

  • Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Proc Land 32:329–365

    Article  Google Scholar 

  • Boven A, Pasteels P, Punzalan LE, Yamba TK, Musisi JH (1998) Quaternary perpotassic magmatism in Uganda (Tore-Ankole Volcanic Province): age assessment and significance for magmatic evolution along the East African Rift. J Afr Earth Sci 26(3):463–476

    Article  Google Scholar 

  • Braun J (2002) Quantifying the effect of recent relief changes on age-elevation relationships. Earth Planet Sci Lett 200:331–343

    Article  Google Scholar 

  • Bumby AJ, Guiraud R (2005) The geodynamic setting of the Phanerozoic basins of Africa. J Afr Earth Sci 43(1–3):1–12

    Google Scholar 

  • Davis W (1899) The geographical cycle. Geogr J 14:481–504

    Article  Google Scholar 

  • Delvaux D, Barth A (2010) African Stress Pattern from formal inversion of focal mechanism data. Implications for rifting dynamics. Tectonophysics 482:105–128

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Mineral 84:1224–1234

    Google Scholar 

  • D’Oreye N, Cayol V, Kervyn F, GVO (2007) The November 2006 Nyamulagira eruption revealed by lnSAR. Proceeding of the 26th ECGS workshop, AVCOR07, Luxemburg, November 2007

  • Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94

    Article  Google Scholar 

  • Dunkl I (2002) Trackkey: a Windows program for calculation and graphical presentation offission track data. Comput Geosci 28:3–12

    Article  Google Scholar 

  • Ebinger CJ (1989) Tectonic development of the western branch of the East African rift system. Geol Soc Am Bull 101:885–903

    Article  Google Scholar 

  • Ebinger CJ, Furman T (2002) Geodynamical setting of the Virunga Volcanic Province, East Africa. Acta Vulcanol 14(1–2):1–8

    Google Scholar 

  • Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395:788–791

    Article  Google Scholar 

  • Ebinger CJ, Deino AL, Tesha AL, Becker T, Ring U (1993) Tectonic controls on rift basin morphology: evolution of the Northern Malawi (Nyasa) Rift. J Geophys Res 98(B10):17,821–17,836

    Google Scholar 

  • Emmel B, Jöns N, Kroener A, Jacobs J, Wartho J-A, Schenk V, Razakamanana T, Austegard A (2008) From closure of the mozambique ocean to gondwana breakup: new evidence from geochronological data of the vohibory terrane, Southwest Madagascar. J Geol 116(1):21–38

    Article  Google Scholar 

  • England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177

    Article  Google Scholar 

  • Farley KA (2000) Helium diffusion from apatite: general behaviour as illustrated by Durango fluorapatite. J Geophys Res 105(B2): 2903–2914

    Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long-alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Fitzgerald PG, Baldwin SL, Webb LE, O’Sullivan PB (2006) Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225(1–2):91–120

    Article  Google Scholar 

  • Flowers RM, Bowring SA, Reiners PW (2006) Low long-term erosion rates and extreme continental stability documented by ancient (U–Th)/He dates. Geology 34:925–928

    Article  Google Scholar 

  • Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73(8):2347–2365. doi:10.1016/j.gca.2009.01.015

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1992) The morphotectonic evolution of rift-margin mountains in central Kenya: constraints from apatite fission-track thermochronology. Earth Planet Sci Lett 113:157–171

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1993) Episodic denudation in East Africa: a legacy of intracontinental tectonism. Geophys Res Lett 20(21):2395–2398

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15:258–271

    Article  Google Scholar 

  • Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13(6):471–478

    Article  Google Scholar 

  • Green PF (1981) ‘Track-in track’ length measurements in annealed apatites. Nucl Tracks 5:121–128

    Article  Google Scholar 

  • Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89(3–4):335–352

    Article  Google Scholar 

  • Green PF, Durrani SA (1977) Annealing studies of tracks in crystals. Nucl Track Detect 1:33–39

    Article  Google Scholar 

  • Grist AM, Ravenhurst CE (1992a). Mineral separation techniques used at Dalhousie University. In: Zentilli M, Reynolds PH (eds), Short course handbook on low temperature thermochronology, 1992. Mineral Associ Can Short Course Handb 20 Append 2: 203–209

  • Grist AM, Ravenhurst CE (1992b). A step-by-step laboratory guide to fission track thermochronology at Dalhousie University. In: Zentilli M, Reynolds PH (eds), Short course handbook on low temperature thermochronology, 1992. Mineral Associ Can Short Course Handb 20 Append 1:190–201

  • Haines S (2008) Transformations in clay-rich fault rocks: constraining fault zone processes and the kinematic evolution of regions. Master Thesis, University of Michigan

  • Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the fission track working group of the I.U.G.S. Subcommission on geochronology. Chem Geol 80:171–178

    Google Scholar 

  • Hurford AJ, Green PF (1982) A user’s guide to fission-track dating calibration. Earth Planet Sci Lett 59:343–354

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The Zeta age calibration of fission-track dating. Isot Geosci 1:285–317

    Google Scholar 

  • Kampunzu AB, Bonhomme MG, Kanika M (1998) Geochronology of volcanic rocks and evolution of the Cenozoic Western Branch of the East African Rift System. J Afr Earth Sci 26(3):441–461

    Article  Google Scholar 

  • Karner GD, Byamungu BR, Ebinger CJ, Kampunzu AB, Mukasa RK, Nyakaana J, Rubondo ENT, Upcott NM (2000) Distribution of crustal extension and regional basin architecture of the Albertine rift system, East Africa. Mar Petrol Geol 17:1131–1150

    Article  Google Scholar 

  • Ketcham RA (2005) Forward and inverse modelling of low-temperature thermochronometry data. In: Reiners PW, Ehlers TA (eds), Low-temperature thermochronology: techniques, interpretations and applications. Rev Mineral Geochem 58:275–314

  • Ketcham (2009) HeFTy version 1.6.7, Manual

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Ame Mineral 84:1235–1255

    Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved measurements of fission-track annealing in apatite. Ame Mineral 92:789–798

    Article  Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved modeling of fission-track annealing in apatite. Ame Mineral 92:799–810

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth Planet Sci Lett 284:504–515

    Article  Google Scholar 

  • Koehn D, Aanyu K, Haines S, Sachau T (2008) Rift nucleation, rift propagation and the creation of basement micro-plates within active rifts. Tectonophysics 458:105–116

    Article  Google Scholar 

  • Koehn D, Lindenfeld M, Rümpker G, Aanyu, Haines S, Passchier C (2010) Active transsection faults in rift transfer zones: Evidence for rotating stress fields in the East African Rift and implications for crustal fragmentation processes. Int J Earth Sci (this issue)

  • Kooi H, Beaumont C (1994) Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction. J Geophys Res 99:12,191–12,209

    Google Scholar 

  • Kooi H, Beaumont C (1996) Large-scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface processes model. J Geophys Res 101:3361–3386

    Article  Google Scholar 

  • Laerdal T, Talbot MR (2002) Basin neotectonics of Lakes Edward and George, East African Rift. Palaeogeogr Palaeoclimatol Palaeoecol 187:213–232

    Article  Google Scholar 

  • Laslett GM, Gleadow AJW, Duddy IR (1984) The relationship between fission track length and track density distributions. Nucl Tracks 9:29–38

    Google Scholar 

  • Lisker F, Ventura B, Glasmacher UA (2009) Apatite thermochronology in modern geology. Geol Soc London Spec Publ 324:1–23

    Article  Google Scholar 

  • Logatchev NA, Beloussov VV, Milanovsky EE (1972) East African Rift Development. Tectonophysics 15:71–81

    Article  Google Scholar 

  • MacPhee D (2006) Exhumation, Rift-flank uplift, and Thermal Evolution of the Rwenzori Mountains Determined by Combined (U-Th)/He and U-Pb Thermochronometry. Master Thesis, Massachusetts Institute of Technology

  • Mbede EL (2001) Tectonic setting and uplift analysis of the Pangani Rift Basin in Northern Tanzania using apatite fission track thermochronology. Tanzan J Sci 27A (Abstr vol)

  • McConnell RB (1959) Outline of the geology of the Ruwenzori Mountains, a preliminary account of the results of the British Ruwenzori expedition, 1951–1952. Overseas Geol Miner Resour 7(3):245–268

    Google Scholar 

  • Michot F (1938) Etude pétrographique et géologique du Ruwenzori septentrional. Mém Inst Roy Colon Belg Sect Sc Nat Med 8:66–271

    Google Scholar 

  • Mitchell SG, Reiners PW (2003) Influence of wildfires on apatite and zircon (U-Th)/He ages. Geology 31:1025–1028

    Article  Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201:481–489

    Article  Google Scholar 

  • Morley CK (1999) Tectonic evolution of the East African Rift System and the modifying influence of magmatism: a review. Acta Vulcanol 11(1):1–19

    Google Scholar 

  • Nagudi B, Bauer FU, Glasmacher UA, Foerster A, Foerster H-J, Schumann A, Kontny J (in preparation) Petrography and geochemistry of Rwenzori Mountains lithologies, East African Rift System, Uganda

  • Noble WP, Foster DA, Gleadow AJW (1997) The post-Pan-African thermal and extensional history of the crystalline basement rocks in eastern Tanzania. Tectonophysics 275:331–350

    Article  Google Scholar 

  • Nyblade AA (1997) Heat flow across the East African Plateau. Geophys Res Lett 24(16):2083–2086

    Article  Google Scholar 

  • Nyblade AA, Brazier RA (2002) Precambrian lithospheric controls on the development of the East African rift system. Geology 30(8):755–758

    Article  Google Scholar 

  • Nyblade AA, Pollack HN, Jones DL, Podmore F, Musjayandebvu M (1990) Terrestrial heat flow in East and Southern Africa. J Geophys Res 95:17,371–17,384

    Google Scholar 

  • Ollier CD, Pain CF (2000) The origin of mountains. Routledge, London

    Google Scholar 

  • Osmaston HA, Harrison SP (2005) The late Quaternary glaciation of Africa: a regional synthesis. Quatern Int 138:32–54

    Article  Google Scholar 

  • Ovington T, Burdon P (2009) Upper Pliocene Fluvio-DElataic Reservoirs of the Victoria Nile/Butiaba Play, Alpert Rift, Western Uganda. PESGB Conference September 2009, London

  • Petters SW (1991) Regional geology of Africa. In: Bhattacharji S, Friedmann GM, Neugebauer HJ, Seilacher A (eds) Lect Notes Earth Sci 40. Springer, Heidelberg

    Google Scholar 

  • Pickford M (1990) Uplift of the Roof of Africa and its bearing on the Evolution of mankind. Human Evol 5(1):1–20

    Article  Google Scholar 

  • Pickford M, Senut B, Hadoto D (1993) Geology and paleobiology of the albertine rift valley in uganda-zaire. vol I, Geol Occas Publ 24 Centre International pour la Formation et les Echanges Geologiques, Orléans

  • Pik R, Marty B, Carignan J, Lavé J (2003) Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry: implications for uplift and erosion fo the Afar plume dome. Earth Planet Sci Lett 215:73–88

    Article  Google Scholar 

  • Pik R, Marty B, Carignan J, Yirgu G, Ayalew T (2008) Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography. Geology 36:167–170

    Article  Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Reiners PW, Ehlers TA (2005) Low-temperature thermochronology: techniques, interpretations and applications. Rev Mineral Geochem 58:151–176

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188:413–420

    Article  Google Scholar 

  • Reiners PW, Nicolescu S (2006) Measurement of parent nuclides for (U-Th)/He chronometry by solution sector ICP-MS, ARHDL Report 1, University of Arizona

  • Reiners PW, Shuster DL (2009) Thermochronology and landscape evolution. Phys Today 62(9):31–36

    Article  Google Scholar 

  • Ring U (2008) Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: Structural framework and possible role of glaciations. Tectonics 27 (TC4018). doi:10.1029/2007TC002176

  • Ring U, Betzler C (1995) Geology of the Malawi Rift: kinematic and tectono-sedimentary background to the Chiwondo Beds, northern Malawi. J Hum Evol 28(1):7–21

    Article  Google Scholar 

  • Ring U, Betzler C, Delvaux D (1992) Normal versus strike-slip faulting during rift development in East Africa: the Malawi rift. Geology 20:1015–1018

    Article  Google Scholar 

  • Roller S, Hornung J, Hinderer M, Ceglarek J, Ssemmanda I (2008) A Middle Miocene to Pleistocene synrift sedimentary sequence in the southern Albertine Grabend (Uganda). 26th IAS Regional Meeting/SEPM-CES SEDIMENT 2008, Bochum, Abstract Volume, SDGG 58

  • Schlueter T (1994) Zur Verbreitung, Fazies und Stratigraphie der Karoo in Uganda. Berliner Geowiss Abh E13:453–467

    Google Scholar 

  • Schlueter T (1997) Geology of East Africa. Gebr. Bortntraeger, Berlin, Stuttgart

    Google Scholar 

  • Shuster DL, Farley KA (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Acta 73(1):183–196

    Article  Google Scholar 

  • Shuster DL, Flowers RM, Farley KA (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett 249:148–161

    Article  Google Scholar 

  • Sobel ER, Seward D (2010) Influence of etching conditions on apatite fission-track etch pit diameter. Chem Geol 271:59–69

    Article  Google Scholar 

  • Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2004) Integrating apatite fission track and (U-Th)/He data: the thermal evolution of rift-valley flanks in central Kenya. Abstract book, Int. Fission-track conference 2004, Amsterdam

  • Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2007) Morphotectonic evolution of the central Kenya rift flanks: implications for late cenozoic environmental change in East Africa. Geology 35(5):427–430

    Article  Google Scholar 

  • Tanner PWG (1971) The Stanley Volcanics formation of Ruwenzori, Uganda. Fifteenth Annual Report of the Research Institute of African Geology, University of Leeds

  • Taylor RG, Howard KWF (1998) Post-Palaeozoic evolution of weathered land surfaces in Uganda by tectonically controlled deep weathering and stripping. Geomorphology 25(3–4):173–192

    Article  Google Scholar 

  • Torsvik TH, Gaina C, Redfield TF (2008) Antarctica and global paleogeography: fromRodinia, through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways. In Antarctica: A Keystone in a ChangingWorld, Proceedings 10th Int Symp Antarctic Earth Sci, The National Academies Press, Washington, pp 125–140

  • Upcott NM, Mukasa RK, Ebinger CJ (1996), Along-axis segmentation and isostasy in the Western rift, East Africa. J Geophys Res 101(B2): 3247–3268

    Google Scholar 

  • Van Damme D, Pickford M (2003) The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithioidea) of the Albertine Rift Valley (Uganda - Congo) and their bearing on the origin and evolution of the Tangayikan thallasoid malacofauna. Hydrobiologia 498:1–83

    Article  Google Scholar 

  • Van der Beek P, Mbede E, Andriessen P, Delvaux D (1998) Denudation history of the Malawi and Rukawa Rift flanks (East African Rift System) from apatite fission track thermochronology. J Afr Earth Sci 26:363–385

    Article  Google Scholar 

  • Wagner GA (1972) Spaltspurenalter von Mineralen und natürlichen Gläsern: eine Übersicht. Fortsch Miner 49:114–145

    Google Scholar 

  • Wagner GA, Van den Haute P (1992) Fission-track dating. Enke, Stuttgart

    Book  Google Scholar 

  • Wagner M, Altherr R, Van den Haute P (1992) Apatite fission-track analysis of Kenyan basement rocks: constraints on the thermotectonic evolution of the Kenya dome. A reconnaissance study. Tectonophysics 204:93–110

    Article  Google Scholar 

  • Wallis CS, Valliant WW (2004) Technical report on the Kilembe Mine, Uganda. Prepared for Uganda Gold Mining Ltd. Rosco Postle Associates Inc, Report

  • Wallner H, Schmeling H (2010) Rift induced delamination of mantle lithosphere and crustal uplift. Int J Earth Sci, doi:10.1007/s00531-010-0521-6

  • Whittow JB (1966) The landforms of the central Ruwenzori, East Africa. Geogr J 132(1):32–42

    Article  Google Scholar 

  • Wolf RA, Farley KA, Silver LT (1996) Helium diffusion and low-temperature thermochronometry of apatite. Geochim Cosmochim Acta 60(21):4231–4240

    Article  Google Scholar 

Download references

Acknowledgments

We thank the RiftLink research group and our partners from Makerere University for discussion on the Rwenzori geology as well as for the support in the field. We also thank the Uganda National Council for Science and Technology (UNCST) as well as the Uganda Wildlife Authority (UWA) for supporting fieldwork. Furthermore, we would like to thank Peter W. Reiners and Stefan Nicolescu for analytical assistance and valuable discussions. Matthias Hinderer and Martin Wipf are thanked for their constructive suggestions and comments on an earlier version of the manuscript. For providing the computer code HeFTy we would like to express our thanks to Richard A. Ketcham and Raymond A. Donelick, and to Raymond A. Donelick, allowing using Dpar as a kinetic parameter. ASTER GDEM, product of METI & NASA is thanked for providing their images. We furthermore appreciate the support given by Heiko Gerstenberg and the Forschungs-Neutronenquelle FRM II at Garching, TU München. Acknowledgement is given to the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for their support (GL 182/9-1) and for funding the project (DFG research unit 703). The University Mainz is gratefully acknowledged for a grant supporting a pilot study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. U. Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, F.U., Glasmacher, U.A., Ring, U. et al. Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci (Geol Rundsch) 99, 1575–1597 (2010). https://doi.org/10.1007/s00531-010-0549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0549-7

Keywords

Navigation