Skip to main content
Log in

Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg–Landau vortices for sphere-valued maps. In particular, we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization are ruled by the Landau–Lifshitz–Gilbert equation, which combines characteristic properties of a nonlinear Schrödinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Baldo S., Orlandi G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54, 1411–1472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. André N., Shafrir I.: On nematics stabilized by a large external field. Rev. Math. Phys. 11(6), 653–710 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antos R., Otani Y., Shibata J.: Magnetic vortex dynamics. J. Phys. Soc. Jpn. 77, 031004 (2008)

    Article  ADS  Google Scholar 

  4. Bertotti G.: Hysteresis in Magnetism: for Physicists, Material Scientists, and Engineers. Academic Press, San Diego (1998)

    Google Scholar 

  5. Bethuel F., Brezis H., Hélein F.: Ginzburg–Landau Vortices. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  6. Capella A., Melcher C., Otto F.: Effective dynamics in ferromagnetic thin films and the motion of Néel walls. Nonlinearity 11, 2519–2537 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Chang K.-C.: Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 363–395 (1989)

    MATH  Google Scholar 

  8. Colliander, J.E., Jerrard, R.L.: Vortex dynamics for the Ginzburg–Landau–Schrödinger equation. Int. Math. Res. Not. 333–358 (1998)

  9. Colliander J.E., Jerrard R.L.: Ginzburg–Landau vortices: weak stability and Schrödinger equation dynamics. J. Anal. Math. 77, 129–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. DeSimone A., Kohn R.V., Müller S., Otto F.: A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55, 1408–1460 (2002)

    Article  MATH  Google Scholar 

  11. DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. Science of Hysteresis. (Eds. Bertotti, G. and Magyergyoz, I.) Elsevier, Amsterdam, 269–381, 2005

  12. Eells J., Lemaire L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbert T.L.: A Lagrangian formulation of gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  14. Gioia G., James R.D.: Micromagnetics of very thin films. Proc. R. Soc. Lond. A 453, 213–223 (1997)

    Article  ADS  Google Scholar 

  15. Gliga S., Hertel R., Schneider C.M.: Flipping magnetic vortex cores on the picosecond time scale. Phys. B 403, 334–337 (2008)

    Article  ADS  Google Scholar 

  16. Guo B., Hong M.C.: The Landau–Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. Partial Differ. Equ. 1, 311–334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hang F.B., Lin F.H.: Static theory for planar ferromagnets and antiferromagnets. Acta Math. Sin. (Engl. Ser.) 17, 541–580 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huber D.L.: Dynamics of spin vortices in two-dimensional planar magnets. Phys. Rev. B 26, 3758–3765 (1982)

    Article  ADS  Google Scholar 

  19. Hubert A., Schäfer R.: Magnetic Domains. Springer, Berlin (1998)

    Google Scholar 

  20. Jerrard R., Spirn D.: Refined Jacobian estimates for Ginzburg–Landau functionals. Indiana Univ. Math. J. 56, 135–186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerrard R., Spirn D.: Refined Jacobian estimates and Gross–Pitaevsky vortex dynamics. Arch. Ration. Mech. Anal. 190, 425–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jerrard R.L., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differ. Equ. 14, 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kohn R.V., Slastikov V.V.: Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178, 227–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurzke M.: Boundary vortices in thin magnetic films. Calc. Var. Partial Differ. Equ. 26, 1–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurzke M.: The gradient flow motion of boundary vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 91–112 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Kurzke M., Melcher C., Moser R., Spirn D.: Dynamics for Ginzburg–Landau vortices under a mixed flow. Indiana Univ. Math. J. 58(6), 2597–2622 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Landau L.D., Lifshitz E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sovietunion 8, 153–169 (1935)

    MATH  Google Scholar 

  28. Lin F.-H.: Vortex dynamics for the nonlinear wave equation. Commun. Pure Appl. Math. 52, 737–761 (1999)

    Article  Google Scholar 

  29. Lin F.-H., Shatah J.: Soliton dynamics in planar ferromagnets and antiferromagnets. J. Zhejiang Univ. Sci. 4, 503–510 (2003)

    Article  MATH  Google Scholar 

  30. Lin F.-H., Xin J.X.: On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation. Commun. Math. Phys. 200, 249–274 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Miot E.: Dynamics of vortices for the complex Ginzburg–Landau equation. Anal. PDE 2(2), 159–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moser R.: Ginzburg–Landau vortices for thin ferromagnetic films. Appl. Math. Res. Express 1, 1–32 (2003)

    Article  Google Scholar 

  33. Moser R.: Boundary vortices for thin ferromagnetic films. Arch. Ration. Mech. Anal. 174, 267–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moser R.: Moving boundary vortices for a thin-film limit in micromagnetics. Commun. Pure Appl. Math. 58, 701–721 (2005)

    Article  MATH  Google Scholar 

  35. Park J.P., Eames P., Engebretson D.M., Berezovsky J., Crowell P.A.: Imaging of spin dynamics in closure domains and vortex structures. Phys. Rev. B 67, 02403 (2003)

    Google Scholar 

  36. Podio-Guidugli P., Tomassetti G.: On the evolution of domain walls in hard ferromagnets. SIAM J. Appl. Math. 64, 1887–1906 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sacks J., Uhlenbeck K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113, 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sandier E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403

  39. Sandier, E.: Asymptotics for a nematic in an electric field. Université de Tours, 1999 (preprint)

  40. Sandier E., Serfaty S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57, 1627–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sandier E., Serfaty S.: A product-estimate for Ginzburg–Landau and corollaries. J. Funct. Anal. 211, 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schoen R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253–268 (1983)

    MathSciNet  MATH  Google Scholar 

  43. Serfaty S.: Local minimizers for the Ginzburg–Landau energy near critical magnetic field. I. Commun. Contemp. Math. 1, 213–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Serfaty S.: Local minimizers for the Ginzburg–Landau energy near critical magnetic field. II. Commun. Contemp. Math. 1, 295–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Serfaty S.: Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. II. The dynamics. J. Eur. Math. Soc. (JEMS) 9(3), 383–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shinjo T., Okuno T., Hasseldorf R., Shigeto K., Ono T.: Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000)

    Article  ADS  Google Scholar 

  47. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. Thiele A.A.: Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Moser.

Additional information

Communicated by A. Mielke

Part of this research was carried out while the authors enjoyed the hospitality of the Hausdorff Research Institute for Mathematics in Bonn. Matthias Kurzke was partially supported by DFG SFB 611; Daniel Spirn was partially supported by NSF grant DMS-0707714.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurzke, M., Melcher, C., Moser, R. et al. Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation. Arch Rational Mech Anal 199, 843–888 (2011). https://doi.org/10.1007/s00205-010-0356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0356-0

Keywords

Navigation