Skip to main content
Log in

Standing wave solutions of Maxwell–Dirac systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the following Maxwell–Dirac system

$$\begin{aligned}&-i\sum ^3_{k=1}\alpha _{k}\partial _{k}u + (V(x)+a)\beta u + \omega u-K(x)\phi u =F_u(x,u),\\&\quad -\Delta \phi =4\pi K(x)|u|^2, \end{aligned}$$

in \(\mathbb {R}^3\), where V(x) is a potential function and F(xu) is a nonlinear function modeling various types of interaction and K(tx) is the varying pointwise charge distribution. Since the effects of the nonlocal term, we use some special techniques to deal with the nonlocal term. Moreover, we prove the existence of infinitely many geometrically distinct solutions for superquadratic as asymptotically quadtratic nonlinearities via variational approach. Some recent results in the literature are generalized and significantly improved. Some examples are also given to illustrate our main theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abenda, S.: Solitary waves for Maxwell–Dirac and Coulomb–Dirac models. Ann. Inst. Henri. Poincaré 68, 229–244 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Ackermann, N.: A Cauchy–Schwarz type inequality for bilinear integrals on positive measures. Proc. Am. Math. Soc. 133, 2647–2656 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Booss-Bavnbek, B.: Unique continuation property for Dirac operator, revisited. Contemp. Math. 258, 21–32 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Ding, Y.H.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nach. 279, 1267–1288 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Ding, Y.H.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226, 210–249 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Benhassine, A.: On nonlinear Dirac equations. J. Math. Phys. 60, 011510 (2019). https://doi.org/10.1063/1.5053684

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Lieb, E.: A relation between pointwise convergence of function and convergence of functional. Proc. Am. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Chadam, J.M.: Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac system in one space dimension. J. Funct. Anal. 13, 173–184 (1973)

    MATH  Google Scholar 

  12. Chadam, J.M., Glassey, R.T.: On the Maxwell–Dirac equations with zero magnetic field and their solutions in two space dimension. J. Math. Anal. Appl. 53, 495–507 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Coti-Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4, 693–727 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Coti-Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^{N}\). Commun. Pure Appl. Math. 45, 1217–1269 (1992)

    MATH  Google Scholar 

  15. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    MATH  Google Scholar 

  16. Chen, G.Y., Zheng, Y.Q.: Stationary solutions of non-autonomous Maxwell–Dirac systems. J. Differ. Equ. 255, 840–864 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Ding, Y.H.: Variational Methods for Strongly Indefinite Problems. World Scientific Press, Singapore (2008)

    Google Scholar 

  18. Ding, Y.H., Wei, J.C., Xu, T.: Existence and concentration of semi-classical solutions for a nonlinear Maxwell–Dirac system. J. Math. Phys. 54, 061505 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Ding, Y.H., Xu, T.: On the concentration of semi-classical states for a nonlinear Dirac–Klein–Gordon system. J. Differ. Equ. 256, 1264–1294 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Ding, Y.H., Xu, T.: On semi-classical limits of ground states of a nonlinear Maxwell–Dirac system. Calc. Var. Part. Diff. Equ. 51, 17–44 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations. Calc. Var. Part. Differ. Equ. 4, 265–281 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Esteban, M.J., Lewin, M., Séré, E.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. 45, 535–593 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Flato, M., Simon, J., Taffin, E.: On the global solutions of the Maxwell–Dirac equations. Commun. Math. Phys. 113, 21–49 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Finkelstein, R., LeLevier, R., Ruderman, M.: Nonlinear spinor fields. Phys. Rev. 83, 326–332 (1951)

    MathSciNet  MATH  Google Scholar 

  25. Finkelstein, R., Fronsdal, C., Kaus, P.: Nonlinear spinor field. Phys. Rev. 103, 1571–1579 (1956)

    MATH  Google Scholar 

  26. Georgiev, V.: Small amplitude solutions of Maxwell–Dirac equations. Indiana Univ. Math. J. 40, 845–883 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Gross, L.: The Cauchy problem for the coupled Maxwell–Dirac equations. Commun. Pure Appl. Math. 19, 1–5 (1966)

    MathSciNet  MATH  Google Scholar 

  28. Grandy Jr., W.T.: Relativistic Quantum Mechanics of Leptonsand Fields, vol. 41. Kluwer Academic Publishers Group, Dordrecht (1991)

    Google Scholar 

  29. Glassey, R.T., Chadam, J.M.: Properties of the solutions of the Cauchy problem for the classical coupled Maxwell–Dirac equations in one space dimension. Proc. Am. Math. Soc. 43, 373–378 (1974)

    MathSciNet  MATH  Google Scholar 

  30. Garrett Lisi, A.: A solitary wave solution of the Maxwell–Dirac equations. J. Phys. A Math. Gen. 28, 5385–5392 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Kryszewki, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441–472 (1998)

    MATH  Google Scholar 

  32. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Z.S., Guo, S.J.: On ground state solutions for the Schrödinger–Poisson equations with critical growth. J. Math. Anal. Appl. 412, 435–448 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Radford, C.J.: The stationary Maxwell–Dirace quations. J. Phys. A Math. Gen. 36, 5663–5681 (2003)

    MATH  Google Scholar 

  35. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 665–674 (2006)

    Google Scholar 

  36. Sparber, C., Markowich, P.: Semiclassical asymptotics for the Maxwell–Dirac system. J. Math. Phys. 44, 4555–4572 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer, Berlin (1992)

    MATH  Google Scholar 

  38. Wakano, M.: Intensely localized solutions of the classical Dirac–Maxwell field equations. Program. Theor. Phys. 35, 1117–1141 (1966)

    Google Scholar 

  39. Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)

    MATH  Google Scholar 

  40. Zhao, F.K., Ding, Y.H.: Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal. 70, 921–935 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, J., Qin, W.P., Zhao, F.K.: Multiple solutions for a class of nonperiodic Dirac equations with vector potentials. Nonlinear Anal. 75, 5589–5600 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, J., Tang, X.H., Zhang, W.: Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity. J. Math. Phys. 54, 101502 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, J., Tang, X.H., Zhang, W.: Ground states for nonlinear Maxwell–Dirac system with magnetic field. J. Math. Anal. Appl. 421, 1573–1586 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, J., Tang, X.H., Zhang, W.: Existence and multiplicity of stationary solutions for a class of Maxwell–Dirac system. Nonlinear Anal. 127, 298–311 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, J., Tang, X.H., Zhang, W.: Ground state solutions for a class of nonlinear Maxwell–Dirac system. Topol. Methods Nonlinear Anal. 46, 785–798 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, J., Zhang, W., Xie, X.L.: Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Commu. Pure Appl. Anal. 15, 599–622 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, L.G., Zhao, F.K.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their careful reading, critical comments and helpful suggestions, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazek Benhassine.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhassine, A. Standing wave solutions of Maxwell–Dirac systems. Calc. Var. 60, 107 (2021). https://doi.org/10.1007/s00526-021-01935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01935-5

Mathematics Subject Classification

Navigation