Skip to main content
Log in

Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller–Segel systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the initial-boundary value problem for the degenerate parabolic equation

$$\begin{aligned} u_t=\nabla \cdot (f(u)\nabla u+{g(u,x,t)}),\quad x\in \Omega ,\ t>0 \end{aligned}$$

in a smooth bounded domain \(\Omega \subset \mathbb {R}^N(N\in \mathbb {N})\) under the no-flux boundary condition with a non-negative initial data \(u_0\in L^\infty (\Omega )\). Here f is a non-negative function belonging to \({C([0,\infty )) \cap C^2((0,\infty ))}\), and g is a vector-valued function on \([0,\infty ) \times \Omega \times (0,\infty )\). It is known that this problem has a global-in-time weak solution by the well-known parabolic theory. This paper shows the stabilization in this problem; in detail, the problem admits a global weak solution which fulfills

$$\begin{aligned} u(t)\rightarrow \frac{1}{|\Omega |}\int _\Omega u_0 \quad \text{ weakly}^* \text{ in } L^\infty (\Omega ) \text{ as } t\rightarrow \infty . \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35, 1891–1904 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Part. Differ. Equ. 55, 1–39 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chae, M., Kang, K., Lee, J., Jihoon, F.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Comm. Part. Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cieślak, T., Winkler, M.: Stabilization in a higher-dimensional quasilinear Keller–Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. 159, 129–144 (2017)

    Article  MathSciNet  Google Scholar 

  6. Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28, 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fujie, K., Ishida, S., Ito, A., Yokota, T.: Large time behavior in a chemotaxis model with nonlinear general diffusion for tumor invasion. Funkcial. Ekvac. 61, 37–80 (2018)

    Article  MathSciNet  Google Scholar 

  8. Fujie, K., Ito, A., Yokota, T.: Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain–Anderson type. Adv. Math. Sci. Appl. 24, 67–84 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Hashira, T., Ishida, S., Yokota, T.: Finite-time blow-up for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differ. Equ. 264, 6459–6485 (2018)

    Article  MathSciNet  Google Scholar 

  10. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  Google Scholar 

  11. Ishida, S.: Global existence and boundedness for chemotaxis-Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst. 35, 3463–3482 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  13. Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller–Segel system via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. S 13, 212–232 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Ishige, K., Laurençot, P., Mizoguchi, N.: Blow-up behavior of solutions to a degenerate parabolic–parabolic Keller–Segel system. Math. Ann. 367, 461–499 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jiang, J.: Convergence to equilibria of global solutions to a degenerate quasilinear Keller–Segel system. Z. Angew. Math. Phys. 69, Paper No. 130 (2018)

  16. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  17. Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic-parabolic Keller–Segel system with critical diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 197–220 (2017)

    Article  MathSciNet  Google Scholar 

  18. Mizoguchi, N.: Determination of blowup type in the parabolic–parabolic Keller–Segel system. Math. Ann. 376, 39–60 (2020)

    Article  MathSciNet  Google Scholar 

  19. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. Ser. Int. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Osaki, K., Yagi, A.: Finite dimensional attractors for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Senba, T., Suzuki, T.: A quasi-linear parabolic system of chemotaxis. Abstr. Appl. Anal. 2006, 1–21 (2006)

    Article  MathSciNet  Google Scholar 

  22. Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)

    Article  MathSciNet  Google Scholar 

  23. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  24. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  Google Scholar 

  25. Winkler, M.: Aggregation vs, global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  26. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  27. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Rational Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54, 3789–3828 (2015)

    Article  MathSciNet  Google Scholar 

  29. Zheng, J.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 263, 2606–2629 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Ishida.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Ishida is supported by JSPS Grant-in-Aid for Scientists Research (Nos. 15K17578, 21K13815). T. Yokota is supported by JSPS Grant-in-Aid for Scientific Research (Nos. 16K05182, 21K03278).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, S., Yokota, T. Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller–Segel systems. Calc. Var. 61, 105 (2022). https://doi.org/10.1007/s00526-022-02203-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02203-w

Mathematics Subject Classification

Navigation