Skip to main content
Log in

Localized elliptic gradient estimate for solutions of the heat equation on \({ RCD}^*(K,N)\) metric measure spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we will establish a localized elliptic gradient estimate for weak solutions of the heat equation on metric measure spaces with generalized Ricci curvature bounded from below. One of its main applications is a sharp gradient estimate for the logarithm of heat kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Emery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric meausure spaces with Riemannian Ricci curvauture bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry–Émery condition, the gradient estimates and the local-to-global property of \({\mathit{RCD}}^*(K, N)\) metric measure spaces. J. Geom. Anal. 26(1), 24–56 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bacher, K., Sturm, K.: Localization and tensonrization properties of the curvature-dimension for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bakry, D., Bolley, F., Gentil, I.: The Li–Yau inequality and applications under a curvature-dimension condition. Ann. Inst. Fourier Grenoble 67(1), 397–421 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155(1), 98–153 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li–Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Cavalletti, F., Milman, E.: The Globalization Theorem for the Curvature Dimension Condition (2016). arXiv:1612.07623

  11. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Engoulatov, A.: A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature. J. Funct. Anal. 238, 518–529 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Erbar, M., Kuwada, K., Sturm, K.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Garofalo, N., Mondino, A.: Li–Yau and Harnack type inequalities in metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Gigli, N.: The Splitting Theorem in Non-smooth Context (2013). arXiv:1302.5555

  17. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113), vi-91 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gigli, N.: Non-smooth differential geometry. Mem. Am. Math. Soc. 251(1196), vi-161 (2018)

  19. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Auscher, P., Coulhon, T., Grigor’yan, A. (eds.) Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemporary Mathematics, vol. 338, pp. 173–218. American Mathematical Society, Providence (2003)

  20. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x-101 (2000)

    MATH  Google Scholar 

  21. Hua, B., Kell, M., Xia, C.: Harmonic Functions on Metric Measure Spaces (2013). arXiv:1308.3607

  22. Hamilton, R.: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1(1), 88–99 (1993)

    MathSciNet  Google Scholar 

  23. Hsu, E.P.: Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Am. Math. Soc. 127, 2739–3744 (1999)

    MathSciNet  Google Scholar 

  24. Jiang, R., Li, H., Zhang, H.: Heat kernel bounds on metric measure spaces and some spplications. Potential Anal. 44, 601–627 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Jiang, R.: The Li–Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. 104(9), 29–57 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Jiang, R., Zhang, H.-C.: Hamilton’s gradient estimates and a monotonicity formula for heat flows on metric measure spaces. Nonlinear Anal. 131, 32–47 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Kotschwar, B.: Harmilton’s gradient estimate for the heat kernel on complete manifolds. Proc. Am. Math. Soc. 135(9), 3013–3019 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Lee, P.W.Y.: Generalized Li–Yau estimates and Huisken’s monotonicity formula. ESAIM Control Optim. Calc. Var. 23, 827–850 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Li, J., Xu, X.: Differential Harnack inequalities on Riemannian manifolds I: linear heat equation. Adv. Math. 226(5), 4456–4491 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    MathSciNet  Google Scholar 

  31. Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 54, 1295–1361 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Li, X.-D.: Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry–Emery Ricci curvature. Math. Ann. 353, 403–437 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Li, X.-D.: Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds. Stoch. Process. Appl. 126, 1264–1283 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Lott, J., Villani, C.: Weak curvature bounds and functional inequalities. J. Funct. Anal. 245(1), 311–333 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Marola, N., Masson, M.: On the Harnack inequality for parabolic minimizers in metric measure spaces. Tohoku Math. J. 65, 569–589 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Mondino, A., Naber, A.: Structure theory of metric measure spaces with lower Ricci curvature bounds, To appear in JEMS (2014). arXiv:1405.2222

  38. Ni, L.: Monotonicity and Li–Yau–Hamilton inequalities. In: Cao, H.-D., Yau, S.-T. (eds.) Surveys in Differential Geometry. Geometric Flows. Surveys in Differential Geometry, vol. 12, pp. 251–301. International Press, Somerville (2008)

    MathSciNet  MATH  Google Scholar 

  39. Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Münst. J. Math. 4, 53–64 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Qian, B.: Remarks on differential Harnack inequalities. J. Math. Anal. Appl. 409(1), 556–566 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Qian, Z., Zhang, H.-C., Zhu, X.-P.: Sharp spectral gap and Li–Yau’s estimate on Alexandrov spaces. Math. Z. 273(3–4), 1175–1195 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \(RCD(K,\infty )\) metric measure spaces. Discret. Contin. Dyn. Syst. 34, 1641–1661 (2014)

    MATH  Google Scholar 

  44. Souplet, P., Zhang, Q.S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38(6), 1045–1053 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Stroock, D.W., Turetsky, J.: Upper bounds on derivatives of the logarithm of the heat kernel. Commun. Anal. Geom. 6, 669–685 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Sturm, K.: Heat kernel bounds on manifolds. Math. Ann. 292, 149–162 (1992)

    MathSciNet  MATH  Google Scholar 

  47. Sturm, K.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Sturm, K.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Sturm, K.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Sturm, K.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  51. Wu, J.Y.: Elliptic gradient estimates for a weighted heat equation and applications. Math. Z. 280, 451–468 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, H.-C., Zhu, X.-P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Commun. Anal. Geom. 18(3), 503–554 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, H.-C., Zhu, X.-P.: Local Li-Yau’s estimates on \({\mathit{RCD}}^*(K, N)\) metric measure spaces. Calc. Var. PDE 55, 93 (2016). https://doi.org/10.1007/s00526-016-1040-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thanks the anonymous referees for some suggestions to simplify the argument of Lemma 3.1. Jia-Cheng Huang partially supported by China Postdoctoral Science Foundation funded Project 2017M611438. Hui-Chun Zhang partially supported by NSFC 11521101 and NSFC 11571374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Chun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JC., Zhang, HC. Localized elliptic gradient estimate for solutions of the heat equation on \({ RCD}^*(K,N)\) metric measure spaces. manuscripta math. 161, 303–324 (2020). https://doi.org/10.1007/s00229-018-1095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1095-z

Mathematics Subject Classification

Navigation