Skip to main content
Log in

Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

  • Review Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012–2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized areas. A principal components analysis established that the concentrations of each pollen type differed across the urbanization gradients. Additionally, it was found that a large number of allergenic pollens are produced by ornamental trees, some only recently introduced by urban planners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argáez Márquez O (1996) Estudio aerobiológico en la zona urbana de la ciudad de Aguascalientes. Invest Cienc Univ Autónoma Aguascalientes 5:21–26

    Google Scholar 

  • Baran H, Ozcan KM, Selcuk A et al (2014) Allergic rhinitis and its impact on asthma classification correlations. J Laryngol Otol 128:431–437. doi:10.1017/S0022215114000693

    Article  CAS  Google Scholar 

  • Bartra J, Sastre J, Del Cuvillo A et al (2009) From pollinosis to digestive allergy. J Investig Allergol Clin Immunol 19:3–10

    Google Scholar 

  • Bosch-Cano F, Bernard N, Sudre B et al (2011) Human exposure to allergenic pollens: a comparison between urban and rural areas. Environ Res 111:619–625

    Article  CAS  Google Scholar 

  • Bravo H, Torres R, Sosa R (1988) Ozone and its nighttime concentration in the southern Mexico City metropolitan area. Geofis Int 27:83–98

    CAS  Google Scholar 

  • Buseck PR, Posfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci 96:3372–3379. doi:10.1073/pnas.96.7.3372

    Article  CAS  Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc Ecol 25:17–33. doi:10.1007/s10980-009-9402-4

    Article  Google Scholar 

  • Calderon C, Lacey J, McCartney A, Rosas I (1997) Influence of urban climate upon distribution of airborne Deuteromycete spore concentrations in Mexico City. Int J Biometeorol 40:71–80. doi:10.1007/s004840050021

    Article  Google Scholar 

  • Calderon C, Lacey J, McCartney HA, Rosas I (1995) Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana 34:260–268. doi:10.1080/00173139509429055

    Article  Google Scholar 

  • Cariñanos P, Casares-Porcel M (2011) Urban green zones and related pollen allergy: a review. Some guidelines for designing spaces with low allergy impact. Landsc Urban Plan 101:205–214

    Article  Google Scholar 

  • Chacalo A, Aldama A, Grabinsky J (1994) Street tree inventory in Mexico City. J Arboric 20:222–226

    Google Scholar 

  • D’Amato G, Cecchi L (2010) Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Invest 20:95–102

    Google Scholar 

  • D’Amato G, Cecchi L (2008) Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy 38:1264–1274

    Article  Google Scholar 

  • D’Amato G, Cecchi L, Bonini S et al (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62:976–990

    Article  Google Scholar 

  • Dahmann N, Wolch J, Joassart-Marcelli P et al (2010) The active city? Disparities in provision of urban public recreation resources. Health Place 16:431–445. doi:10.1016/j.healthplace.2009.11.005

    Article  Google Scholar 

  • De Vizcaya-Ruiz A, Gutiérrez-Castillo ME, Uribe-Ramirez M et al (2006) Characterization and in vitro biological effects of concentrated particulate matter from Mexico City. Atmos Environ 40:583–592. doi:10.1016/j.atmosenv.2005.12.073

    Article  Google Scholar 

  • Després VR, Alex Huffman J, Burrows SM et al (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus Ser B Chem Phys Meteorol 64:1–40. doi:10.3402/tellusb.v64i0.15598

    Article  Google Scholar 

  • Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087. doi:10.1016/j.envpol.2011.01.010

    Article  CAS  Google Scholar 

  • Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol 52:667–674. doi:10.1007/s00484-008-0159-2

    Article  Google Scholar 

  • Gioulekas D, Balafoutis C, Damialis A et al (2004) Fifteen years’ record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. Int J Biometeorol 48:128–136

    Article  Google Scholar 

  • Gonzalez-Diaz SN, Rodriguez-Ortiz PG, Arias-Cruz A et al (2010) Atmospheric pollen count in Monterrey, Mexico. Allergy Asthma Proc 31:341–348. doi:10.2500/aap.2010.31.3340

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science 319(80):756–760

    Article  CAS  Google Scholar 

  • Guvensen A, Ozturk M (2003) Airborne pollen calendar of Izmir—Turkey. Ann Agric Environ Med 10:37–44

    Google Scholar 

  • Hejda M (2012) What is the impact of Impatiens parviflora on diversity and composition of herbal layer communities of temperate forests? PLoS One 7, e39571

    Article  CAS  Google Scholar 

  • Hirst J (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Hruska K (2003) Assessment of urban allergophytes using an allergen index. Aerobiologia (Bologna) 19:107–111. doi:10.1023/A:1024450601697

    Article  Google Scholar 

  • INEGI (2010) INEGI. In: Cartogr. Urbana. http://www.inegi.org.mx/geo/contenidos/urbana/default.aspx. Accessed 1 Jan 2015

  • Jato V, Rodríguez-Rajo J, Dacosta N, Aira M (2004) Heat and chill requirements of Fraxinus flowering in Galicia (NW Spain). Grana 43:217–223

    Article  Google Scholar 

  • Jauregui E (1997) Heat island development in Mexico City. Atmos Environ 31:3821–3831

    Article  CAS  Google Scholar 

  • Jolliffe IT (1993) Principal component analysis: a beginner’s guide—II. Pitfalls, myths and extensions. Weather 48:246–253. doi:10.1002/j.1477-8696.1993.tb05899.x

    Article  Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326:151–180

    Article  CAS  Google Scholar 

  • Kardinal Jusuf S, Wong NH, Hagen E et al (2007) The influence of land use on the urban heat island in Singapore. Habitat Int 31:232–242. doi:10.1016/j.habitatint.2007.02.006

    Article  Google Scholar 

  • Kasprzyk I, Ortyl B, Dulska-Jeż A (2014) Relationships among weather parameters, airborne pollen and seed crops of Fagus and Quercus in Poland. Agric For Meteorol 197:111–122. doi:10.1016/j.agrformet.2014.05.015

    Article  Google Scholar 

  • Kaszewski BM, Pidek IA, Piotrowska K, Weryszko-Chmielewska E (2008) Annual pollen sums of Alnus in Lublin and Roztocze in the years 2001–2007 against selected meteorological parameters. Acta Agrobot 61:57–64

    Article  Google Scholar 

  • Lafragua J, Gutiérrez A, Aguilar E et al (2003) Balance hídrico del valle de México. Anu IMTA 40–45

  • Lyytimäki J, Sipilä M (2009) Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban For Urban Green 8:309–315. doi:10.1016/j.ufug.2009.09.003

    Article  Google Scholar 

  • MacInnis G (2012) Measuring and modelling the dispersal of pollen and spores by wind. Concordia University

  • Makra L, Juhász M, Borsos E, Béczi R (2004) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 49:37–47. doi:10.1007/s00484-004-0208-4

    Article  CAS  Google Scholar 

  • McKinney M (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. doi:10.1007/s11252-007-0045-4

    Article  Google Scholar 

  • Millerón M, López de Heredia U, Lorenzo Z et al (2012) Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol 213:1715–1728. doi:10.1007/s11258-012-0125-2

    Article  Google Scholar 

  • Mimet A, Pellissier V, Quénol H et al (2009) Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. Int J Biometeorol 53:287–298

    Article  CAS  Google Scholar 

  • Molina LT, Madronich S, Gaffney JS et al (2010) An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos Chem Phys 10:8697–8760

    Article  CAS  Google Scholar 

  • Murray MG, Galán C, Villamil CB (2008) Aeropalynological research in Salitral de la Vidriera, Buenos Aires province, Argentina. Aerobiologia (Bologna) 24:181–190

    Article  Google Scholar 

  • Neil K, Wu J (2006) Effects of urbanization on plant flowering phenology: a review. Urban Ecosyst 9:243–257

    Article  Google Scholar 

  • Organisation for Economic Co-Operation and Development, China Development Research Foundation (2010) Trends in Urbanisation and Urban Policies in OECD Countries: What Lessons for China? 219

  • Osornio-Vargas ÁR, Bonner JC, Alfaro-Moreno E et al (2003) Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ Health Perspect 111:1289

    Article  CAS  Google Scholar 

  • Overland JE, Preisendorfer RW (1982) A significance test for principal components applied to a cyclone climatology. Mon Weather Rev 110:1–4

    Article  Google Scholar 

  • Parrish DD, Singh HB, Molina L, Madronich S (2011) Air quality progress in North American megacities: a review. Atmos Environ 45:7015–7025

    Article  CAS  Google Scholar 

  • Peel RG, Ørby PV, Skjøth CA et al (2014) Seasonal variation in diurnal atmospheric grass pollen concentration profiles. Biogeosciences 11:821–832

    Article  Google Scholar 

  • Pérez-Badia R, Rapp A, Vaquero C, Fernández-González F (2011) Aerobiological study in east-central Iberian Peninsula: pollen diversity and dynamics for major taxa. Ann Agric Environ Med 18:99–111

    Google Scholar 

  • Puc M (2011) Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Ann Agric Environ Med AAEM 19:660–665

    Google Scholar 

  • Raga GB, Baumgardner D, Kok G, Rosas I (1999) Some aspects of boundary layer evolution in Mexico City. Atmos Environ 33:5013–5021

    Article  CAS  Google Scholar 

  • Rajasekar U, Weng Q (2009) Urban heat island monitoring and analysis using a non-parametric model: a case study of Indianapolis. ISPRS J Photogramm Remote Sens 64:86–96. doi:10.1016/j.isprsjprs.2008.05.002

    Article  Google Scholar 

  • Ramírez-Arriaga E, Melchor-Sánchez JE, Martínez-Hernández, E. Lozano-García S (1995) Análisis de polen y fungosporas de la atmósfera en el S.W. de la Ciudad de México, durante el segundo semestre de 1988. Investig. recientes en paleobotánica y Palinol. 155–169

  • Ribeiro H, Cunha M, Abreu I (2003) Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia (Bologna) 19:21–27

    Article  Google Scholar 

  • Rivera F, Roy-Ocotla G, Rosas I et al (1987) Amoebae isolated from the atmosphere of Mexico City and environs. Environ Res 42:149–154. doi:10.1016/S0013-9351(87)80016-6

    Article  CAS  Google Scholar 

  • Rizwan AM, Dennis LYC, Liu C (2008) A review on the generation, determination and mitigation of urban heat island. J Environ Sci 20:120–128

    Article  CAS  Google Scholar 

  • Rocha-Estrada A, Alvarado-Vazquez MA, Torres-Cepeda TE et al (2008) Airborne pollen of Carya, Celtis, Cupressus, Fraxinus and Pinus in the metropolitan area of Monterrey Nuevo Leon, Mexico. Ann Agric Environ Med 15:205–209

    Google Scholar 

  • Rodriguez-Rajo FJ, Méndez J, Jato V (2005) Factors affecting pollination ecology of Quercus anemophilous species in north-west Spain. Bot J Linn Soc 149:283–297. doi:10.1111/j.1095-8339.2005.00460.x

    Article  Google Scholar 

  • Rodriguez-Rajo FJ, Valencia-Barrera RM, Vega-Maray AM et al (2006) Prediction of airborne Alnus pollen concentration by using ARIMA models. Ann Agric Environ Med 13:25

    Google Scholar 

  • Rosas I, Calderon C, Escamilla B, Ulloa M (1992) Seasonal distribution of Aspergillus in the air of an urban area: Mexico City. Grana 31:315–319

    Article  Google Scholar 

  • Rosas I, Calderón C, Martínez L et al (1997) Indoor and outdoor airborne fungal propagule concentrations in Mexico City. Aerobiologia (Bologna) 13:23–30

    Article  Google Scholar 

  • Rosas I, Calderon C, Ulloa M, Lacey J (1993) Abundance of airborne Penicillium CFU in relation to urbanization in Mexico City. Appl Environ Microbiol 59:2648–2652

    CAS  Google Scholar 

  • Rosas I, Escamilla B, Calderon C, Mosiño P (1990) The daily variations of airborne fungal spores in Mexico City. Aerobiologia (Bologna) 6:153–158

    Article  Google Scholar 

  • Rosas I, Roy-Ocotla G, Mosiño P et al (1987) Abundance and heterogeneity of algae in the Mexico City atmosphere. Geofis Int 26:359–373

    Google Scholar 

  • Rosas I, Roy-Ocotla G, Mosiño P (1989) Meteorological effects on variation of airborne algae in Mexico. Int J Biometeorol 33:173–179

    Article  Google Scholar 

  • Santos-Burgoa C, Rosas I, Yela A (1994) Occurrence of airborne enteric bacteria in Mexico City. Aerobiologia (Bologna) 10:39–45

    Article  Google Scholar 

  • Šikoparija B, Skjøth C, Kübler KA et al (2013a) A mechanism for long distance transport of Ambrosia pollen from the Pannonian Plain. Agric For Meteorol 180:112–117

    Article  Google Scholar 

  • Šikoparija B, Skjøth CA, Alm Kübler K et al (2013b) A mechanism for long distance transport of Ambrosia pollen from the Pannonian Plain. Agric For Meteorol 180:112–117. doi:10.1016/j.agrformet.2013.05.014

    Article  Google Scholar 

  • Sindosi OA, Katsoulis BD, Bartzokas A (2003) An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels. Environ Technol 24:947–962. doi:10.1080/09593330309385633

    Article  CAS  Google Scholar 

  • Small M, Piercy J, Demoly P, Marsden H (2013) Burden of illness and quality of life in patients being treated for seasonal allergic rhinitis: a cohort survey. Clin Transl Allergy 3:33. doi:10.1186/2045-7022-3-33

    Article  Google Scholar 

  • Tarragó IB (1996) An annual study of airborne pollen in northern Mexico City. Aerobiologia (Bologna) 12:191–195

    Article  Google Scholar 

  • Terán LM, Margarete M, Leonor D (2009) Alergia, pólenes y medio ambiente. 145:215–222

  • US EPA (2014) Environ Protect Agency 40 78:1–26

    Google Scholar 

  • Velasco E (2003) Estimates for biogenic non-methane hydrocarbons and nitric oxide emissions in the Valley of Mexico. Atmos Environ 37:625–637

  • Veriankaitė L, Šaulienė I, Bukantis A (2011) Evaluation of meteorological parameters influence upon pollen spread in the atmosphere. J Environ Eng Landsc Manag 19:5–11

    Article  Google Scholar 

  • Vibrans, H. (1998). Urban weeds of México City. Floristic composition and important families. Anales del Instituto de Biología serie Botánica, 69(001)

  • Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic press

  • Wolch J, Newell J, Seymour M et al (2010) The forgotten and the future: reclaiming back alleys for a sustainable city. Environ Plan A 42:2874–2896. doi:10.1068/a42259

    Article  Google Scholar 

  • Xu J, Zhang D (2011) Daily variations of airborne pollen in Beijing Olympic Park during August of three consecutive years and their relationships with meteorological factors. For Stud China 13:154–162

    Article  CAS  Google Scholar 

  • Zhang R, Duhl T, Salam MT et al (2014) Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences 11:1461–1478. doi:10.5194/bg-11-1461-2014

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al (2004) The footprint of urban climates on vegetation phenology. Geophys Res Lett 31, L12209. doi:10.1029/2004GL020137

    Google Scholar 

  • Ziello C, Sparks TH, Estrella N et al (2012) Changes to airborne pollen counts across Europe. PLoS One 7:4–40. doi:10.1371/journal.pone.0034076

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Sistema de Monitoreo Atmosferico de la Ciudad de Mexico (SIMAT) for providing the meteorological and PM10 data. We are also grateful to the Consejo Nacional de Ciencia y Tecnologia (CONACyT) for grant number 419254, as well as the Universidad Nacional Autónoma de México (UNAM) for supporting our research: “Aspectos meteorológicos asociados al aeropolen urbano: Ciudad de México”. We thank the Laboratorio de Paleopalinología from the Instituto de Geología, UNAM, for facilitating the development of this research, as well as Claudia Barrita Nuñez, Fernando Pineda Campos, Leticia Martínez Romero, Eva Salinas Cortés, Raul Quintana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ríos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos, B., Torres-Jardón, R., Ramírez-Arriaga, E. et al. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City. Int J Biometeorol 60, 771–787 (2016). https://doi.org/10.1007/s00484-015-1061-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1061-3

Keywords

Navigation