Skip to main content
Log in

Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The effect of non-reproductive trees and saplings as a physical barrier to pollen dispersal in wind-pollinated species’ forests has not received enough attention in the literature so far. The neighborhood seedling model was used to fit pollen dispersal models for beech at different stages of gap recolonization and to elucidate the effect of saplings as a physical barrier on pollen dispersal at local scale. Phenological overlap of leaf emergence, and pollen release as well as wind directionality patterns were also examined. As a case study, we used a mixed beech-oak forest that was managed as open woodland until 1974. The ban on entry of cattle has led to the recolonization of empty spaces by seedlings and saplings of beech (Fagus sylvatica L.) and two oak species (Quercus petraea (Matts.) Liebl. and Q. pyrenaica Willd.) and, at last, to canopy closure. The average pollen dispersal distance for the first plants that regenerated in the gaps was almost twice those found for recently installed seedlings and seeds collected in traps, supporting the hypothesis that the understory may act as a physical barrier to pollen dispersal. Although a substantial part of effective pollination directionality is at random, horizontal winds and vertical anabatic winds may explain some of this directionality. At the time of beech pollen release, leaves of beech and sessile oak are fully developed, enhancing pollen interception by the saplings. Explicit models of pollen dispersal for wind-pollinated trees should incorporate the effect of canopy closure caused by growth of saplings and account for leaf phenology of co-occurring species in the forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188. doi:10.1111/j.1365-294X.2008.03971.x

    Article  PubMed  Google Scholar 

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105. doi:10.1126/science.281.5373.103

    Article  PubMed  CAS  Google Scholar 

  • Antonovics J, Levin DA (1980) The ecological and genetical consequences of density dependent regulation in plants. Annu Rev Ecol Evol Syst 11:411–452. doi:10.1146/annurev.es.11.110180.002211

    Article  Google Scholar 

  • Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954. doi:10.1111/j.1365-294X.2004.02100.x

    Article  PubMed  Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990. doi:10.1554/04-653

    PubMed  Google Scholar 

  • Burczyk J, Prat D (1997) Male reproductive success in Pseudotsuga menziesii (Mirb) France: the effects of spatial structure and flowering characteristics. Heredity 79:638–647. doi:10.1038/hdy.1997.210

    Article  Google Scholar 

  • Burczyk J, Lewandowski A, Chalupka W (2004) Local pollen dispersal and distant gene flow in Norway spruce (Picea abies L. Karst.). For Ecol Manag 197:39–48. doi:10.1016/j.foreco.2004.05.003

    Article  Google Scholar 

  • Burczyk J, Adams WT, Birkes DS, Chybicki IJ (2006) Using genetic markers to directly estimate gene flow and reproductive success parameters in plants on the basis of naturally regenerated seedlings. Genetics 173:363–372. doi:10.1534/genetics.105.046805

    Article  PubMed  CAS  Google Scholar 

  • Chybicki IJ, Burczyk J (2010) NM+: software implementing parentage-based models for estimating gene dispersal and mating patterns in plants. Mol Ecol Resour 10:1071–1075. doi:doi:10.1111/j.1755-0998.2010.02849.x

    Article  PubMed  CAS  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa:Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764. doi:10.1046/j.1365-294X.2003.01760.x

    Article  PubMed  Google Scholar 

  • Di-Giovanni F, Kevan P, Arnold J (1996) Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario Canada. For Ecol Manag 83:87–97. doi:10.1016/0378-1127(95)03691-1

    Article  Google Scholar 

  • Dounavi A, Koutsias N, Ziehe M, Hattemer HH (2010) Spatial patterns and genetic structures within beech populations (Fagus sylvatica L.) of forked and non-forked individuals. Eur J Forest Res 129:1191–1202. doi:10.1007/s10342-010-0409-9

    Article  Google Scholar 

  • Dyer RJ, Sork VL (2001) Pollen pool heterogeneity in shortleaf pine, Pinus echinata mill. Mol Ecol 10:859–866. doi:10.1046/j.1365-294X.2001.01251.x

    Article  PubMed  CAS  Google Scholar 

  • Fokkema NJ (1971) The effect of pollen in the phyllosphere on colonisation by saprophytic fungi and on infection by Helminthosporium sativum and other leaf pathogens. Neth J Plant Pathol 77(Suppl 1):60

    Google Scholar 

  • Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot-London 103:1515–1527. doi:10.1093/aob/mcp035

    Article  Google Scholar 

  • Fuchs EJ, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). Conserv Genet 12:175–185. doi:10.1007/s10592-010-0130-8

    Article  Google Scholar 

  • Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Cons Biol 17:149–157. doi:10.1046/j.1523-1739.2003.01131.x

    Article  Google Scholar 

  • Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481. doi:10.1046/j.1471-8286.2003.00439.x

    Article  CAS  Google Scholar 

  • Gómez-Casero MT, Galán C, Domínguez-Vilches E (2007) Flowering phenology of Mediterranean Quercus species in different locations (Córdoba, SW Iberian Peninsula). Acta Botanica Malacitana 32:27–146. doi:0210-9506

    Google Scholar 

  • Goodell K, Elam DR, Nason JD, Ellstrand NC (1997) Gene flow among small populations of a self-incompatible plant: an interaction between demography and genetics. Am J Bot 84:1362–1371

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ (2009) How fat is the tail? Heredity 103:437–438. doi:10.1038/hdy.2009.120

    Article  PubMed  Google Scholar 

  • Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523. doi:10.1046/j.1365-294X.2003.01928.x

    Article  PubMed  CAS  Google Scholar 

  • Krzywinski K (1976) En registrering av resent pollenregn malt I forskjelling vegetasjon pa Milde, Bergen. Thesis, University of Bergen, 215 pp

  • Kuparinen A, Markkanen T, Riikonen H, Vesala T (2007) Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecol Model 208:177–188. doi:0.1016/j.ecolmodel.2007.05.023

    Article  Google Scholar 

  • Lian C, Miwa M, Hogetsu T (2001) Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by microsatellite polymorphism. Heredity 87:88–98. doi:10.1046/j.1365-2540.2001.00913.x

    Article  PubMed  CAS  Google Scholar 

  • Muñoz Martínez S (2011) Incorporación del regenerado alrededor de hayas centenarias en el Hayedo de Montejo. Universidad Politécnica de Madrid, Dissertation

  • Nathan R, Katul GG (2005) Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc Natl Acad Sci USA 102:8251–8256. doi:10.1073/pnas.0503048102

    Article  PubMed  CAS  Google Scholar 

  • Nocentini S (2009) Structure and management of beech forest in Italy. iForest 2:105–113. doi:10.3832/ifor0499-002

    Article  Google Scholar 

  • Oddou-Muratorio S, Klein EK, Austerlitz F (2005) Pollen flow in the wild service tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent–offspring analysis. Mol Ecol 14:4441–4452. doi:10.1111/j.1365-294X.2005.02720.x

    Article  PubMed  CAS  Google Scholar 

  • Oddou-Muratorio S, Vendramin GG, Buiteveld J, Fady B (2009) Population estimators or progeny tests: what is the best method to assess null allele frequencies at SSR loci? Conserv Genet 10:1343–1347. doi:10.1007/s10592-008-9648-4

    Article  Google Scholar 

  • Oddou-Muratorio S, Bontemps A, Klein EK, Chybicki I, Vendramin GG, Suyama Y (2010) Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. For Ecol Manag 259:2151–2159. doi:10.1016/j.foreco.2010.03.001

    Article  Google Scholar 

  • Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B (2011) Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 20:1997–2010. doi:10.1111/j.1365-294X.2011.05039.x

    Article  PubMed  Google Scholar 

  • Okubo A, Levin S (1989) A theoretical framework for data-analysis of wind dispersal of seeds and pollen. Ecology 70:329–338. doi:10.2307/1937537

    Article  Google Scholar 

  • Pardo F, Gil L, Pardos JA (2004) Structure and composition of pole-stage stands developed in an ancient wood pasture in central Spain. Forestry 77:67–74. doi:10.1093/forestry/77.1.67

    Article  Google Scholar 

  • Pastorelli R, Smulders MJM, Westende WPC Van’t, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78. doi:10.1046/j.1471-8286.2003.00355.x

    Article  CAS  Google Scholar 

  • Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity (in press). doi:10.1038/hdy.2011.77

  • Pluess AR, Sork VL, Dolan B, Davis FW, Grivet D, Merg K, Papp J, Smouse PE (2009) Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). For Ecol Manag 258:735–744. doi:10.1016/j.foreco.2009.05.014

    Article  Google Scholar 

  • Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Rep 24:45–55. doi:10.1007/BF02914045

    Article  CAS  Google Scholar 

  • Ribbens E, Silander JA, Pacala SW (1994) Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806. doi:10.2307/1939638

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Garcia C (2007) Estimation of the seed dispersal kernel from exact identification of source plants. Mol Ecol 16:5098–5109. doi:10.1111/j.1365-294X.2007.03427.x

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22. doi:10.1038/sj.hdy.6800542

    Article  PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Alia R, Gil L (2004a) Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13:2567–2577. doi:10.1111/j.1365-294X.2004.02251.x

    Article  PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Smouse PE, Gil L, Alia R (2004b) Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For Ecol Manag 197:245–255. doi:10.1016/j.foreco.2004.05.016

    Article  Google Scholar 

  • Shen H, Rudin D, Lindgren D (1981) Study of the pollination pattern in a Scots pine seed orchard by means of isoenzyme analysis. Silvae Genet 30:7–15

    Google Scholar 

  • Smouse PE, Sork VL, Scofield DG, Grivet D (2012) Using seedling and pericarp tissues to determine maternal parentage of dispersed valley oak recruits. Heredity 103:250–259. doi:10.1093/jhered/esr141

    Article  Google Scholar 

  • Tackenberg O (2003) Modelling long-distance dispersal of plant diaspores by wind. Ecol Monogr 73:173–189. doi:10.1890/0012-9615(2003)073[0173:MLDOPD]2.0.CO;2

    Article  Google Scholar 

  • Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F-japonica. Theor Appl Genet 99:11–15. doi:10.1007/s001220051203

    Article  CAS  Google Scholar 

  • Tessier Du, Cross E, Le Tacon F, Nepveu G, Pardé J, Perrin R, Timbal J (1981) Le hêtre. Département des Recherches Forestières, INRA, Paris

    Google Scholar 

  • Torimaru T, Wennström U, Lindgren D, Wang XR (2011) Effects of male fecundity, interindividual distance and anisotropic pollen dispersal on mating success in a Scots pine (Pinus sylvestris) seed orchard. Heredity 108(3):312–321. doi:10.1038/hdy.2011.76

    Article  PubMed  Google Scholar 

  • Treu R, Emberlin J (2000) Pollen dispersal in the crops Maize (Zea mays), oil seed rape (Brassica napus ssp oleifera), potatoes (Solanum tuberosum), sugar beet (Beta vulgaris ssp. vulgaris) and wheat (Triticum aestivum). Evidence from publications. A report for the soil association from the National Pollen Research Unit. University College. Worcester, 57 pp

  • Uchiyama K, Goto S, Ide Y (2009) Effects of population density on male and female reproductive success in the wind- pollinated, wind-dispersed tree species Betula maximowicziana. Conserv Genet 10:1265–1275. doi:10.1007/s10592-008-9694-y

    Article  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Sork V, Collada C, Soto A, Goicoechea PG, Gil L (2005) Gene flow and hybridization in a mixed oak forest (Quercus pyrenaica Willd. and Q. petraea (Matts.) Liebl.) in central Spain. Heredity 95:457–465. doi:10.1038/sj.hdy.6800752

    Article  PubMed  Google Scholar 

  • Valbuena-Carabaña M, Lopez de Heredia U, Fuentes-Utrilla P, Gonzalez-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: A socio-economic process. Rev Palaeobot Palynol 162:492–506. doi:10.1016/j.revpalbo.2009.11.003

    Article  Google Scholar 

  • Wang KS (2004) Gene flow in European beech (Fagus sylvatica L.). Genetica 122(2):105–113. doi:10.1023/B:GENE.0000040999.07339.d4

    Article  PubMed  CAS  Google Scholar 

  • Ward M, Dick CW, Gribel R, Lowe AJ (2005) To self, or not to self. A review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity 95:246–254. doi:10.1038/sj.hdy.6800712

    Article  PubMed  CAS  Google Scholar 

  • Watson GS (1962) Goodness-of-fit tests on a circle II. Biometrika 49:57–63

    Google Scholar 

  • Whitehead DR (1969) Wind pollination in the Angiosperms: evolutionary and environmental considerations. Evolution 23(1):28–35

    Article  Google Scholar 

  • Williams CG (2010) Long-distance pine pollen still germinates after meso-scale dispersal. Am J Bot 97:846–855. doi:10.3732/ajb.0900255

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Autonomic Government of Madrid Region and the Spanish Ministry of Education and Science provided financial assistance to the following projects: CAM 07 M/0011/2000, CAM 07 M/0012/2002, and AGL2006-00813. M. Millerón has a PhD grant from the AECID (Spanish Ministry of Foreign Affairs and Cooperation). We thank G. González-Gordaliza and F.J. Navarro-Knecht for field assistance, Peter Bischofberger for the laboratory assistance and an anonymous reviewer for comments on English and style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unai López de Heredia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millerón, M., López de Heredia, U., Lorenzo, Z. et al. Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol 213, 1715–1728 (2012). https://doi.org/10.1007/s11258-012-0125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-012-0125-2

Keywords

Navigation