Skip to main content
Log in

Water quality variations in different climates of Iran: toward modeling total dissolved solid using soft computing techniques

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In present paper, wavelet analysis of total dissolved solid that monitored at Nazlu Chay (northwest of Iran), Tajan (north of Iran), Zayandeh Rud (central of Iran) and Helleh (south of Iran) basins with various climatic conditions, have been studied. Daubechies wavelet at suitable level (db4) has been calculated for TDS of each selected basins. The performance of artificial neural networks (ANN), two different adaptive-neurofuzzy inference system (ANFIS) including ANFIS with grid partition (ANFIS-GP) and ANFIS with subtractive clustering (ANFIS-SC), gene expression programming (GEP), wavelet-ANN, wavelet-ANFIS and wavelet-GEP in predicting TDS of mentioned basins were assessed over a period of 20 years at twelve different hydrometric stations. EC (μmhos/cm), Na (meq L−1) and Cl (meq L−1) parameters were selected (based on Pearson correlation) as input variables to forecast amount of TDS in four studied basins. To develop hybrid wavelet-AI models, the original observed data series was decomposed into sub-time series using Daubechies wavelets at suitable level for each basin. Based on the statistical criteria of correlation coefficient (R), root mean square error (RMSE) and mean absolute error (MAE), the hybrid wavelet-AI models performance were better than single AI models in all basins. A comparison was made between these artificial intelligence approaches which emphasized the superiority of wavelet-GEP over the other intelligent models with amount of RMSE 18.978, 6.774, 9.639 and 318.363 mg/l, in Nazlu Chay, Tajan, Zayandeh Rud and Helleh basins, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abonyi J, Andersen H, Nagy L, Szeifert F (1999) Inverse fuzzy-process-model based direct adaptive control. Math Comput Simul 51(1):119–132

    Article  Google Scholar 

  • Abudu S, King JP, Sheng Z (2012) Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande. JAWRA J Am Water Resour Assoc 48(1):10–23

    Article  Google Scholar 

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1):28–40

    Article  Google Scholar 

  • Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1):85–91

    Article  Google Scholar 

  • Alizadeh MJ, Kavianpour MR (2015) Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Marine Pollution Bull 98(1):171–178

    Article  CAS  Google Scholar 

  • Antoine JP (1999) Wavelet analysis: a new tool in physics. In Wavelets in Physics Vol. 1, p 9

  • Antonopoulos VZ, Papamichail DM, Mitsiou KA (2001) Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrol Earth Syst Sci Dis 5(4):679–692

    Article  Google Scholar 

  • Apha A WPCF (American Public Health Association, American Water works Association, Water Pollution Control Federation) (1992) Standard methods for the examination of water and wastewater. Standard methods for the Examination of Water and Wastewater, 17

  • Aussem A, Campbell J, Murtagh F (1998) Wavelet-based feature extraction and decomposition strategies for financial forecasting. J Comput Intell Finance 6(2):5–12

    Google Scholar 

  • Badrzadeh H, Sarukkalige R, Jayawardena AW (2013) Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting. J Hydrol 507:75–85

    Article  Google Scholar 

  • Barzegar R, Adamowski J, Moghaddam AA (2016) Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stoch Environ Res Risk Assess 30(7):1797–1819

    Article  Google Scholar 

  • Bonami A, Soria F, Weiss G (1993) Band-limited wavelets. J Geometric Anal 3(6):543–578

    Article  Google Scholar 

  • Chang LC, Chang FJ (2001) Intelligent control for modelling of real-time reservoir operation. Hydrol Process 15(9):1621–1634

    Article  Google Scholar 

  • Chen D, Chen HW (2013) Using the Köppen classification to quantify climate variation and change: an example for 1901–2010. Environ Dev 6:69–79

    Article  Google Scholar 

  • Chenini I, Khemiri S (2009) Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int J Environ Sci Technol 6(3):509–519

    Article  CAS  Google Scholar 

  • Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell fuzzy Syst 2(3):267–278

    Google Scholar 

  • Chu CK (1992) An introduction to wavelets. Academic, New York

    Google Scholar 

  • Emamgholizadeh S, Kashi H, Marofpoor I, Zalaghi E (2014) Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int J Environ Sci Technol 11(3):645–656

    Article  CAS  Google Scholar 

  • Etemad-Shahidi A, Afshar H, Alikia H, Moshfeghi H (2009) Total dissolved solid modeling; Karkheh reservoir case example. Int J Environ Res 3(4):671–680

    CAS  Google Scholar 

  • Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence (Vol. 21). Springer, Berlin

    Google Scholar 

  • Fijani E, Nadiri AA, Moghaddam AA, Tsai FTC, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. J Hydrol 503:89–100

    Article  CAS  Google Scholar 

  • Ghavidel SZZ, Montaseri M (2014) Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin. Stoch Environ Res Risk Assess 28(8):2101–2118

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2013) Trend analysis of water quality parameters for the Nisava river. Facta Univ-Ser: Archit Civil Eng 11(3):199–210

    Article  Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  CAS  Google Scholar 

  • Ham FM, Kostanic I (2001) Fundamental neurocomputing concepts. Principles of Neurocomputing for Science and Engineering. Arnold Publishers, London, pp 24–91

    Google Scholar 

  • Haykin S (1998) Neural networks a comprehensive foundation, 2nd edn. Prentice-Hall, Upper Saddle River, pp 26–32

    Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, New Jersey

    Google Scholar 

  • Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comput Civil Eng 8(2):201–220

    Article  Google Scholar 

  • Kennedy EP, Condon M, Dowling J (2003) Torque-ripple minimisation in switched reluctance motors using a neuro-fuzzy control strategy. In: Modelling and Simulation (pp 106–109)

  • Kim TW, Valdés JB (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng 8(6):319–328

    Article  Google Scholar 

  • Kisi O, Shiri J (2011) Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour Manage 25(13):3135–3152

    Article  Google Scholar 

  • Kisi O, Nia AM, Gosheh MG, Tajabadi MRJ, Ahmadi A (2012) Intermittent streamflow forecasting by using several data driven techniques. Water Resour Manage 26(2):457–474

    Article  Google Scholar 

  • Köppen W (1936) Handbuch der Klimatologie. In: Köppen W and Geiger G (eds) 1. C. Gebr, Borntraeger, (pp 1–44)

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Krauss G, Kindangen JI, Depecker P (1997) Using artificial neural networks to predict interior velocity coefficients. Build Environ 32(4):295–303

    Article  Google Scholar 

  • Kumar S, Kumar A, Kumar R, Pathak JK, Alam M (2014) Spectral analysis of biochemical oxygen demand in river water: an analytical approach of discrete wavelet transform. Am J Math Stat 4(2):107–112

    CAS  Google Scholar 

  • Leščešen I, Pantelić M, Dolinaj D, Stojanović V, Milošević D (2015) Statistical analysis of water quality parameters of the Drina River (West Serbia), 2004–11. Pol J Environ Stud 24(2):555–661

    Article  Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

    Article  Google Scholar 

  • Mehr AD, Kahya E, Bagheri F, Deliktas E (2014) Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Sci Inf 7(4):217–229

    Article  Google Scholar 

  • Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1):127–138

    Article  Google Scholar 

  • Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013a) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manage 27(5):1301–1321

    Article  Google Scholar 

  • Moosavi V, Vafakhah M, Shirmohammadi B, Ranjbar M (2013b) Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting. Arab J Sci Eng 39:1785–1796

    Article  Google Scholar 

  • Mousavi M, Kiani S, Lotfi S, Naeemi N, Honarmand M (2008) Transient and spatial modeling and simulation of polybrominated diphenyl ethers reaction and transport in air, water and soil. Int J Environ Sci Technol 5(3):323–330

    Article  CAS  Google Scholar 

  • Najah AA, El-Shafie A, Karim OA, Jaafar O (2012) Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Comput Appl 21(5):833–841

    Article  Google Scholar 

  • Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22(3):466–472

    Article  Google Scholar 

  • Nourani V, Kisi Ö, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J Hydrol 402(1):41–59

    Article  Google Scholar 

  • Nourani V, Baghanam AH, Adamowski J, Gebremichael M (2013) Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J Hydrol 476:228–243

    Article  Google Scholar 

  • Nourani V, Baghanam AH, Adamowski J, Kisi O (2014a) Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review. J Hydrol 514:358–377

    Article  Google Scholar 

  • Nourani V, Baghanam AH, Rahimi AY, Nejad FH (2014b) Evaluation of wavelet-based de-noising approach in hydrological models linked to artificial neural networks. In: Computational intelligence techniques in earth and environmental sciences. Springer, Netherlands, pp 209–241

  • Özger M, Kabataş MB (2015) Sediment load prediction by combined fuzzy logic-wavelet method. J Hydroinf 17(6):930–942

    Article  Google Scholar 

  • Parmar KS, Bhardwaj R (2013) Wavelet and statistical analysis of river water quality parameters. Appl Math Comput 219(20):10172–10182

    Google Scholar 

  • Parmar KS, Bhardwaj R (2015) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manage 29(1):17–33

    Article  Google Scholar 

  • Partal T, Cigizoglu HK (2009) Prediction of daily precipitation using wavelet—neural networks. Hydrol Sci J 54(2):234–246

    Article  Google Scholar 

  • Partal T, Kişi Ö (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342(1):199–212

    Article  Google Scholar 

  • Rahimikhoob A (2010) Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theoret Appl Climatol 101(1–2):83–91

    Article  Google Scholar 

  • Rajaee T, Mirbagheri SA, Zounemat-Kermani M, Nourani V (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Total Environ 407(17):4916–4927

    Article  CAS  Google Scholar 

  • Ramana RV, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network analysis. Water Resour Manage 27(10):3697–3711

    Article  Google Scholar 

  • Ravansalar M, Rajaee T (2015) Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environ Monit Assess 187(6):366

    Article  Google Scholar 

  • Ren L, Xiang XY, Ni JJ (2011) Forecast modeling of monthly runoff with adaptive neural fuzzy inference system and wavelet analysis. J Hydrol Eng 18(9):1133–1139

    Article  Google Scholar 

  • Samhouri M, Abu-Ghoush M, Yaseen E, Herald T (2009) Fuzzy clustering-based modeling of surface interactions and emulsions of selected whey protein concentrate combined to ι-carrageenan and gum arabic solutions. J Food Eng 91(1):10–17

    Article  CAS  Google Scholar 

  • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manage 26(6):1715–1729

    Article  Google Scholar 

  • Sanikhani H, Kisi O, Nikpour MR, Dinpashoh Y (2012) Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques. Water Resour Manage 26(15):4347–4365

    Article  Google Scholar 

  • Shankar BU, Meher SK, Ghosh A (2011) Wavelet-fuzzy hybridization: feature-extraction and land-cover classification of remote sensing images. Appl Soft Comput 11(3):2999–3011

    Article  Google Scholar 

  • Shekarrizfard M, Karimi-Jashni A, Hadad K (2012) Wavelet transform-based artificial neural networks (WT-ANN) in PM10 pollution level estimation, based on circular variables. Environ Sci Pollut Res 19(1):256–268

    Article  CAS  Google Scholar 

  • Shiri J, Kişi Ö (2011) Estimation of daily suspended sediment load by using wavelet conjunction models. J Hydrol Eng 17(9):986–1000

    Article  Google Scholar 

  • Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2013) Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J Hydrol 480:46–57

    Article  Google Scholar 

  • Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manage 27(2):419–432

    Article  Google Scholar 

  • Singh KP, Malik A, Basant N, Saxena P (2007) Multi-way partial least squares modeling of water quality data. Anal Chim Acta 584(2):385–396

    Article  CAS  Google Scholar 

  • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Model 220(6):888–895

    Article  CAS  Google Scholar 

  • Smeti EM, Golfinopoulos SK (2016) Characterization of the quality of a surface water resource by multivariate statistical analysis. Anal Lett 49(7):1032–1039

    Article  CAS  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst, Man, Cybern 1:116–132

    Article  Google Scholar 

  • Talei A, Chua LH (2012) Influence of lag time on event-based rainfall–runoff modeling using the data driven approach. J Hydrol 438:223–233

    Article  Google Scholar 

  • Tiwari MK, Chatterjee C (2011) A new wavelet–bootstrap–ANN hybrid model for daily discharge forecasting. J Hydroinf 13(3):500–519

    Article  Google Scholar 

  • Tsukamoto Y (1979) An approach to fuzzy reasoning method. Adv Fuzzy Set Theory and Appl 137:149

    Google Scholar 

  • Wang Y, Wang P, Bai Y, Tian Z, Li J, Shao X, Li BL (2013a) Assessment of surface water quality via multivariate statistical techniques: a case study of the Songhua River Harbin region, China. J Hydro-Environ Res 7(1):30–40

    Article  Google Scholar 

  • Wang F, Wang X, Chen B, Zhao Y, Yang Z (2013b) Chlorophyll a simulation in a Lake Ecosystem using a model with wavelet analysis and Artificial Neural Network. Environ Manage 51(5):1044–1054

    Article  Google Scholar 

  • Wei M, Bai B, Sung AH, Liu Q, Wang J, Cather ME (2007) Predicting injection profiles using ANFIS. Inf Sci 177(20):4445–4461

    Article  Google Scholar 

  • Yager RR, Filev DP (1994) Approximate clustering via the mountain method. IEEE Trans Syst, Man, Cybern 24(8):1279–1284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvin Zaman Zad Ghavidel.

Appendix

Appendix

See Tables 10, 11, 12.

Table 10 Main characteristic of the Köppen climate major groups and sub-types (Chen and Chen 2013)
Table 11 1D Daubechies wavelet values of TDS variable
Table 12 Equations of optimal single GEP models in studied basins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaseri, M., Zaman Zad Ghavidel, S. & Sanikhani, H. Water quality variations in different climates of Iran: toward modeling total dissolved solid using soft computing techniques. Stoch Environ Res Risk Assess 32, 2253–2273 (2018). https://doi.org/10.1007/s00477-018-1554-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1554-9

Keywords

Navigation