Skip to main content
Log in

Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The prediction of water quality parameters plays an important role in water resources and environmental systems. The use of electrical conductivity (EC) as a water quality indicator is one of the important parameters for estimating the amount of mineralization. This study describes the application of artificial neural network (ANN) and wavelet–neural network hybrid (WANN) models to predict the monthly EC of the Asi River at the Demirköprü gauging station, Turkey. In the proposed hybrid WANN model, the discrete wavelet transform (DWT) was linked to the ANN model for EC prediction using a feed-forward back propagation (FFBP) training algorithm. For this purpose, the original time series of monthly EC and discharge (Q) values were decomposed to several sub-time series by DWT, and these sub-time series were then presented to the ANN model as an input dataset to predict the monthly EC. Comparing the values predicted by the models indicated that the performance of the proposed WANN model was better than the conventional ANN model. The correlation of determination (R 2) were 0.949 and 0.381 for the WANN and ANN models, respectively. The results indicate that the peak EC values predicted by the WANN model are closer to the observed values, and this model simulates the hysteresis phenomena at an acceptable level as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407, 28–40.

    Article  Google Scholar 

  • Addison, P. S., Murrary, K. B., & Watson, J. N. (2001). Wavelet transform analysis of open channel wake flows. Journal of Engineering Mechanics, 127, 58–70.

    Article  Google Scholar 

  • Alagha, J., Said, M. A., & Mogheir, Y. (2014). Modeling of nitrate concentration in groundwater using artificial intelligence approach—a case study of Gaza coastal aquifer. Environmental Earth Science, 186(1), 35–45.

    CAS  Google Scholar 

  • Altun, H., Bilgil, A., & Fidan, B. C. (2007). Treatment of multi-dimensional data to enhance neural network estimators in regression problems. Expert Systems with Applications, 32, 599–605.

    Article  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon. ISBN 978-3-642-57760-4.

    Google Scholar 

  • Bruder, S., Babbar-Sebens, M., Tedesco, L., & Soyeux, E. (2014). Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environmental Earth Sciences, 186(3), 1525–1545.

    CAS  Google Scholar 

  • Camdevyren, H., Demyr, N., Kanik, A., & Keskyn, S. (2005). Use of principal component scores in multiple linear regression models for prediction of chlorophyll-an in reservoirs. Journal on Ecological Modelling, 181, 581–589.

    Article  CAS  Google Scholar 

  • Cannas, B., Fanni, A., Sias, G., Tronci, S., & Zedda, M. K. (2005). Stream flow forecasting using neural networks and wavelet analysis. Journal of the European Geoscience Union, 7, 45–51.

    Google Scholar 

  • Civelekoglu, G., Yigit, N. O., Diamadopoulos, E., & Kitis, M. (2007). Prediction of bromate formation using multi-linear regression and artificial neural networks. Journal of Science and Engineering, 29, 353–362.

    CAS  Google Scholar 

  • Cohen, A., & Kovacevic, J. (1996). Wavelets: the mathematical background. Proceedings of the IEEE, 84, 514–22.

    Article  Google Scholar 

  • Daliakopoulos, I., Coulibalya, P., & Tsani, I. K. (2005). Groundwater level forecasting using artificial neural network. Journal of Hydrology, 309, 229–240.

    Article  Google Scholar 

  • Daubechies, I. (1990). The wavelet transform, time–frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5), 961–1005.

    Article  Google Scholar 

  • Diamantopoulou, M. J., Antonopoulos, V. Z., & Papamichail, D. M. (2007). Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Journal of Water Resources Planning and Management, 21, 649–662.

    Article  Google Scholar 

  • Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Journal for Artificial Intelligence in Engineering, 9, 143–151.

    Article  Google Scholar 

  • Hagan, M. T., & Menhaj, M. B. (1994). Training feed forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 6, 861–867.

    Google Scholar 

  • Han, H. G., Chen, Q. L., & Qiao, J. F. (2011). An efficient self-organizing RBF neural network for water quality prediction. Journal of Neural Networks, 24, 717–725.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks: a comprehensive foundation (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Isik, F., & Ozden, G. (2013). Estimating compaction parameters of fine- and coarse-grained soils by means of artificial neural networks. Environmental Earth Science, 69, 2287–2297.

    Article  Google Scholar 

  • Karakaya, N., Evrendilek, F., Gungor, K., & Onal, D. (2013). Predicting diel, diurnal and nocturnal dynamics of dissolved oxygen and chlorophyll-a using regression models and neural networks. Journal of Clean – Soil, Air, Water, 41, 872–877.

    Article  CAS  Google Scholar 

  • Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing in Civil Engineering ASCE, 8, 201–220.

    Article  Google Scholar 

  • Khataee, A. R., & Kasiri, M. B. (2010). Modeling of biological water and wastewater treatment processes using artificial neural networks. Journal of Clean – Soil, Air, Water, 39, 742–749.

    Article  Google Scholar 

  • Kisi, O. (2010). Daily suspended sediment estimation using neuro-wavelet models. Journal of Earth Sciences (Geol Rundsch), 99, 1471–1482.

    Article  Google Scholar 

  • Kisi, O., & Cimen, M. (2011). Precipitation forecasting by using wavelet-support vector machine conjunction model. Journal of Engineering Applications of Artificial Intelligence, 25, 783–792.

    Article  Google Scholar 

  • Labat, D., Ababou, R., & Mangin, A. (2000). Rainfall–runoff relation for karstic spring. Part 2: continuous wavelet and discrete orthogonal multi resolution analyses. Journal of Hydrology, 238, 149–178.

    Article  Google Scholar 

  • Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., & Wei, Y. (2011). A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Journal of Mathematical and Computer Modelling, 58, 458–465.

    Article  Google Scholar 

  • Mallat, S. G. (1989). A theory for multi resolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

    Article  Google Scholar 

  • Masters, T. (1993). Practical neural network recipes in C++. San Diego: Academic.

    Google Scholar 

  • McNeely, R. N., Neimanis, V. P., & Dwyer, L. (1979). Water quality sourcebook. Guide to water quality parameters (p. 89). Ottawa, Canada: Inland Waters Directorate, Water Quality Branch.

    Google Scholar 

  • Muller, B., & Reinhardt, J. (1991). Neural networks—an introduction. Berlin: Springer.

    Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, Part I: a discussion of principles. Journal of Hydrology (Amsterdam), 10, 282–290.

  • Nourani, V., & Parhizkar, M. (2012). Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall-runoff modeling. Journal of Hydroinformatics, 15, 829–848. doi:10.2166/hydra, 2013,141.

    Article  Google Scholar 

  • Nourani, V., Ejlali, R. G., & Alami, M. T. (2010). Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Journal of Environmental Engineering Science, 28, 217–228.

    Article  Google Scholar 

  • Osowski, S., & Garanty, K. (2006). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Journal of Engineering Applications of Artificial Intelligence, 20, 745–755.

    Article  Google Scholar 

  • Paramanik, N., Panda, R. K., & Singh, A. (2009). Daily river flow forecasting using wavelet ANN hybrid models. Journal of Hydroinformatics, 13, 49–63. doi:10.2166/hydro.2010.040.

    Article  Google Scholar 

  • Partal, T., & Cigizoglu, H. K. (2008). Estimation and forecasting of the daily suspended sediment data using wavelet-neural networks. Journal of Hydrology (Amsterdam), 358, 317–331.

    Article  Google Scholar 

  • Piotrowski, A. P., Osuch, M., Napiorkowski, M. J., & Rwinski, P. M. (2013). Comparing large number of met heuristics for artificial neural network straining to predict water temperature in a natural river. Journal of Computers & Geosciences, 64, 136–151.

    Article  Google Scholar 

  • Rajaee, T. (2010). Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction. Journal of Clean – Soil, Air, Water, 38, 275–288.

    Article  CAS  Google Scholar 

  • Rajaee, T. (2011). Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Journal of Science of the Total Environment, 409, 2917–2928.

    Article  CAS  Google Scholar 

  • Rajaee, T., Mirbagheri, S. A., Nourani, V., & Alikhani, A. (2009a). Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model. Journal of Environmental Science and Technology, 7, 93–110.

    Google Scholar 

  • Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M., & Nourani, V. (2009b). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Journal of Science of the Total Environment, 407, 4916–4927.

    Article  CAS  Google Scholar 

  • Rajaee, T., Nourani, V., Zounemat-Kermani, M., & Kisi, O. (2010). River suspended sediment load prediction: application of ANN and wavelet conjunction model. Journal of Hydrologic Engineering, 16, 613–627.

    Article  Google Scholar 

  • Raman, H., & Sunilkumar, N. (1995). Multivariate modelling of water resources time series using artificial neural networks. Journal of Hydrological Sciences, 40, 145–63.

    Article  Google Scholar 

  • Sahoo, G. B., Ray, C., Mehnert, E., & Keefer, D. A. (2006). Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Journal of Science of the Total Environment, 367, 234–51.

    Article  CAS  Google Scholar 

  • Salmani, F., Shabanlou, S., & Fathian, H. (2012). The study of predicting the flow in Gamasiab River by the intelligent system of the artificial neural network. Journal of Ecology, Environment and Conservation, 18, 197–202.

    Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—a case study. Journal of Ecological Modelling, 220, 888–895.

    Article  CAS  Google Scholar 

  • Singh, K. P., Gupta, S., & Rai, P. (2014). Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data. Environmental Earth Science, 186(5), 2749–2765.

    CAS  Google Scholar 

  • Smith, M. (1996). Neural networks for statistical modeling. Boston, ISBN: International Thomson Computer Press.

    Google Scholar 

  • Sreekanth, P., Geethanjali, D. N., Sreedevi, P. D., Ahmed, S., Kumar, N. R., & Jayanthi, P. D. K. (2009). Forecasting groundwater level using artificial neural networks. Journal of Current Science, 96, 933–939.

    Google Scholar 

  • Sudheer, K. P., Gosain, A. K., & Ramasastri, K. S. (2002). Data-driven algorithm for constructing artificial neural network rainfall-runoff models. Journal of Hydrological Processes, 16, 1325–1330.

    Article  Google Scholar 

  • Tan, Y., & Cauwenberghe, A. V. (1999). Neural-network-based dstep-ahead predictors for nonlinear systems with time delay. Journal of Engineering Applications of Artificial Intelligence, 12, 21–25.

    Article  Google Scholar 

  • Tokar, A. S., & Johnson, P. A. (1999). Rainfall runoff modelling using artificial neural networks. Journal of Hydrologic Engineering, 4, 232–239.

    Article  Google Scholar 

  • Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of the hydrology. Journal of Natural Science, 1, 67–71.

    Google Scholar 

  • Wilcox, L. V. (1948). The quality of water for irrigation use. Washington DC: US Department of Agriculture, Technical Bulletin 962.

    Google Scholar 

  • Wu, N., Huang, J., Schmalz, B., & Fohrer, N. (2014). Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches. Journal of Limnology Springer, 15, 47–56.

    Article  Google Scholar 

  • Xu, L., & Liu, S. (2012). Study of short-term water quality prediction model based on wavelet neural network. Journal of Mathematical and Computer Modelling, 58, 807–813.

    Article  Google Scholar 

  • Zounemat-Kermani, M., Beheshti, A. A., Ataie-Ashtiani, B., & Sabbagh-Yazdi, S. R. (2008). Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Journal of Applied Soft Computing, 9, 746–755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ravansalar.

Appendix

Appendix

Details of the WANN models by research groups are depicted in table as follows (Table 6).

Table 6 Details of WANN applications by recent research groups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravansalar, M., Rajaee, T. Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environ Monit Assess 187, 366 (2015). https://doi.org/10.1007/s10661-015-4590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4590-7

Keywords

Navigation