Skip to main content
Log in

Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper examines the potential for the use of artificial neural networks (ANNs) to estimate the reference crop evapotranspiration (ET0) based on air temperature data under humid subtropical conditions on the southern coast of the Caspian Sea situated in the north of Iran. The input variables for the networks were the maximum and minimum air temperature and extraterrestrial radiation. The temperature data were obtained from eight meteorological stations with a range of latitude, longitude, and elevation throughout the study area. A comparison of the estimates provided by the ANNs and by Hargreaves equation was also conducted. The FAO-56 Penman–Monteith model was used as a reference model for assessing the performance of the two approaches. The results of this study showed that ANNs using air temperature data successfully estimated the daily ET0 and that the ANNs with an R 2 of 0.95 and a root mean square error (RMSE) of 0.41 mm day−1 simulated ET0 better than the Hargreaves equation, which had an R 2 of 0.91 and a RMSE of 0.51 mm day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng ASCE 122(2):97–106

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop requirements. FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy

  • Amatya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. J Irrig Drain Eng 121(6):427–435

    Article  Google Scholar 

  • Berengena J, Gavilan P (2005) Reference evapotranspiration estimation in a highly advective semiarid environment. J Irrig Drain Eng ASCE 131(2):147–163

    Article  Google Scholar 

  • Choisnel E, de Viellele O, Lacroze F (1992) Une Approche Uniformisee du calcul de l’evapotranpiration Potentialle Pour l’ensamble des pays de la Communaut´es Europ´eene. Publication EUR 14223, Office des Publications Officielles des Communaut´e Europ´eene: Luxembourg

  • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3–4):244–257

    Article  Google Scholar 

  • Cybenko G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2:303–314

    Article  Google Scholar 

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16:33–45

    Article  Google Scholar 

  • Hargreaves GH (1994) Defining and using reference evapotranspiration. J Irrig Drain Eng 120(6):1132–1139

    Article  Google Scholar 

  • Hargreaves GL, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain EngASCE 108(3):225–230

    Google Scholar 

  • Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng ASCE 129(1):53–63

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Network 2:359–366

    Article  Google Scholar 

  • Irmak S, Allen RG, Whitty EB (2003) Daily grass and alfalfa reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida. J Irrig Drain Eng 129(5):360–370

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manual and Rep. on Engrg. Pract. No. 70, ASCE, NY

  • Katul GG, Cuenca RH, Grebet P, Wright JL, Pruitt WO (1992) Analysis of evaporative flux data for various climates. J Irrig Drain Eng 118(4):601–618

    Article  Google Scholar 

  • Kosarev AN, Yablonskaya EA (1994) The Caspian Sea. SPB Academic, The Hague

    Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233

    Article  Google Scholar 

  • Martınez-Cob A (2002) Infraestimaci´on de la evapotranspiraci´on potencial con el m´etodo de Thornthwaite en climas semi´aridos. In: Cuadrat JM, y Vicente SM, Saz MA (eds) La Informaci´on Clim´atica Como Herramienta de Gestion Ambiental. Universidad de Zaragoza, Zaragoza, pp 117–122

    Google Scholar 

  • Meyer SJ, Hubbard KG, Wilhite DA (1989) Estimating potential evapotranspiration: the effect of random and systematic errors. Agric For Meteorol 46:285–296

    Article  Google Scholar 

  • Odhiambo LO, Yoder RE, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input– output examples. Trans ASAE 44(6):1625–1633

    Google Scholar 

  • Rodionov SN (1994) Global and regional climate interaction: the Caspian Sea experience. Water Science and Technology Library, Kluwer Academic, Dordrecht

    Google Scholar 

  • Sharma ML (1985) Estimating evapotranspiration. In: Hillel D (ed) Advances in irrigation, vol 3. Acain, London

    Google Scholar 

  • Silva AF (2002) Previsao da evapotranspiracao de referencia utilizando redes neurais. Dissertacao de Mestrado, Univ. Federal de Vicosa, Vicosa, Minas Gerais, Brazil

  • Smith M, Allen R, Pereira L (1996) Revised FAO methodology for crop water requirements. In: Proceedings of the International Conference on evapotranspiration and Irrigation Scheduling, San Antonio, TX, USA, pp. 133–140

  • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng ASCE 129(3):214–218

    Article  Google Scholar 

  • Tahir SA (1998) Estimating potential evaporation using artificial neural network. In: Proceedings of the ICID 10th Afro-Asian Conference, Bali

  • Trajkovic S (2007) Hargreaves versus Penman-Monteith under humid conditions. J Irrig Drain Eng 133(1):38–42

    Article  Google Scholar 

  • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng ASCE 129(6):454–457

    Article  Google Scholar 

  • Utset A, Farre I, Martinez-Cob A, Cavero J (2004) Comparing Penman–Monteith and Priestley–Taylor approaches as reference evapotranspiration inputs for modeling maize water-use under Mediterranean conditions. Agric Water Manag 66(3):205–219

    Article  Google Scholar 

  • Vanderlinden K, Giraldez JV, Van Meirvenne M (2004) Assessing reference evapotranspiration by the Hargreaves method in southern Spain. J Irrig Drain Eng ASCE 130(3):184–191

    Article  Google Scholar 

  • Ventura F, Spano D, Duce P, Snyder RL (1999) An evaluation of common evapotranspiration equations. Irrig Sci 18:163–170

    Article  Google Scholar 

  • Xu CY, Singh VP (2001) Evaluation and generalization of temperature based methods for calculating evaporation. Hydrol Process 15:305–319

    Article  Google Scholar 

  • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rahimikhoob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimikhoob, A. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor Appl Climatol 101, 83–91 (2010). https://doi.org/10.1007/s00704-009-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-009-0204-z

Keywords

Navigation