Skip to main content
Log in

Structural changes associated with drought stress symptoms in foliage of Central European oaks

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

In droughted oak foliage, water shortage and carbon starvation caused structural injury varying in severity between cell types and indicative of adaptive reversible and degenerative irreversible processes.

Abstract

Warmer temperatures as a consequence of climate change have already started to affect forest ecosystems, enhancing drought frequency and severity. Also depending on drought chronicity and ontological tissue development, tree foliage can respond to drought by enhancing structural acclimation and thus delay injury. More comprehensive characterization of micromorphological responses in foliage is needed for evaluating the tolerance of forest trees in the future. In the present study, structural reactions in foliage of three oak species exposed to acute summer drought were analyzed using transmitted light, fluorescence and electron microscopy. Oak leaves withstood drought stress for a considerable length of time before injury in the form of necrotic leaf margins appeared. In the leaf parts still asymptomatic, structural changes indicative of water stress and carbon starvation were observed. In the epidermis, autophagic processes—with exocytosis of degraded material—contributed to cell wall thickening. However, they also accelerated the degeneration of cell content whereas stomatal guard cells often remained unscathed. In mesophyll, the material in autolytic vesicles was internalized in vacuoles, which contributed to maintaining the cell turgescence. Plugging of xylem and phloem cells with polysaccharidic and proteinic material was mechanistically related to necrosis of leaf margins. These structural changes were indicative of reversible adaptive and irreversible degenerative processes. The functionality of upper mesophyll and stomata was prioritized, allowing foliage to resume gas exchange within hours of rewatering. Hence, extensive structural changes within still asymptomatic parts of the foliage were accountable in increasing the drought tolerance of the oaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238

    Article  PubMed  Google Scholar 

  • Abrams MD, Kubiske ME (1990) Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin—Influence of light regime and shade tolerance rank. For Ecol Manage 31:245–253

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kizberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Arend M, Kuster T, Günthardt-Goerg MS, Dobbertin M (2011) Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q.petraea and Q.pubescens) Tree Physiol 31:287–297

  • Arend M, Brem A, Kuster TM, Gunthardt-Goerg MS (2013) Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Plant Biol. 15(Suppl 1):169–176

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2:2–11

    Article  CAS  PubMed  Google Scholar 

  • Bey I, Croci-Maspoli M, Fuhrer J, Kull C, Appenzeller Ch, Knutti R, Schär Ch J (2011) Swiss Climate Change Scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, OcCC (2011) http://dx.doi.org/10.3929/ethz-a-006720559

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    Article  PubMed  Google Scholar 

  • Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with sudan red 7B or fluoral yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116

    Article  CAS  PubMed  Google Scholar 

  • CH2014-Impacts (2014) Toward Quantitative Scenarios of Climate Change Impacts in Switzerland, published by OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, Switzerland, 136 pp

  • Clark G (1981) Staining procedures, 4th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change 2(1):45–65. doi:10.1002/wcc.81

    Google Scholar 

  • Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207

    Article  CAS  PubMed  Google Scholar 

  • Dickson RE, Tomlinson PT (1996) Oak growth, development and carbon metabolism in response to water stress. Ann Sci For 53:181–196

    Article  Google Scholar 

  • Eschrich W (1995) Funktionelle Pflanzenanatomie. Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Evert RE (2006) Esau’s plant anatomy. Wiley, Hoboken

    Book  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Fink S (1999) Pathological and Regenerative Plant Anatomy. Borntraeger, Berlin, Stuttgart

    Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Gahan PB (1981) Cell senescence and death in plants. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, London, New York, pp 145–170

    Chapter  Google Scholar 

  • Gamalei Y (1989) Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3:96–110

    Article  Google Scholar 

  • Gerlach D (1984) Botanische Mikrotechnik, 3rd edn. Thieme Verlag, Stuttgart

    Google Scholar 

  • Grill D, Tausz M, Pöllinger U, Jiménez MS, Morales D (2004) Effects of drought on needle anatomy of Pinus canariensis. Flora 199:85–89

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488

    Article  PubMed  Google Scholar 

  • Günthardt-Goerg MS, Kuster TM, Arend M, Vollenweider P (2013) Foliage response of young central European oaks to air warming, drought and soil type. Plant Biol 15(Suppl 1):185–197

    Article  PubMed  Google Scholar 

  • Gutmann M (1993) Localization of proanthocyanidins using in situ-hydrolysis with sulfuric acid. Biotech Histochem 68:161–165

    Article  CAS  PubMed  Google Scholar 

  • Hartmann G, Nienhaus F, Butin H (2007) Farbatlas Waldschäden. 3. Auflage. Diagnose von Baumkrankheiten. 3. Auflage. Eugen Ulmer KG, Stuttgart

  • Hermle S, Vollenweider P, McQuattie CJ, Matyssek R, Günthardt-Goerg MS (2007) Leaf responsiveness of field-grown Populus tremula and Salix viminalis to soil contamination by heavy metals and rainwater acidity. Tree Physiol 27:1517–1531

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, p 151

  • Kangasjarvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036

    Article  CAS  Google Scholar 

  • Kivimäenpää M, Jonsson AM, Stjernquist I, Sellden G, Sutinen S (2004) The use of light and electron microscopy to assess the impact of ozone on Norway spruce needles. Environ Pollut 127:441–453

    Article  PubMed  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12:1463–1467

    Article  CAS  PubMed  Google Scholar 

  • Kuster TM, Arend M, Bleuler P, Gunthardt-Goerg MS, Schulin R (2013a) Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment. Plant Biol. 15(Suppl 1):138–147

    Article  CAS  PubMed  Google Scholar 

  • Kuster T, Arend M, Günthardt-Goerg M, Schulin R (2013b) Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil 369:61–71

    Article  CAS  Google Scholar 

  • Kwon SI, Park OK (2008) Autophagy in plants. J Plant Biol 51:313–320

    Article  CAS  Google Scholar 

  • Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650

    Article  PubMed  Google Scholar 

  • López R, Climent J, Gil L (2010) Intraspecific variation and plasticity in growth and foliar morphology along a climate gradient in the Canary Island pine. Trees 24:343–350

    Article  Google Scholar 

  • Luković J, Maksimović I, Zorić L, Nagl N, Perčić M, Polić D, Putnik-Delić M (2009) Histological characteristics of sugar beet leaves potentially linked to drought tolerance. Ind crop Prod 30:281–286

    Article  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyasu Y, Klionsky DJ (2004) Autophagy in plants. In: Klionsky DJ (ed) Autophagy 2003, pp 208–215

  • Munck L (1989) Fluorescence analysis in food. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Munné-Bosch S, Peñuelas J (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci 166:1105–1110

    Article  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmos E, Sanchez-Blanco MJ, Ferrandez T, Alarcon JJ (2007) Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol 9:77–84

    Article  Google Scholar 

  • Pääkkönen E, Günthardt-Goerg MS, Holopainen T (1998) Responses of leaf processes in a sensitive birch (Betula Pendula Roth) clone to ozone combined with drought. Ann Bot 82:49–59

    Article  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2009) Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Total Environ 407:1631–1643

    Article  CAS  PubMed  Google Scholar 

  • Pitman WD, Holte C, Conrad BE, Bashaw EC (1983) Histological differences in moisture stressed and non-stressed kleingrass forage. Crop Sci 23:793–795

    Article  Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. Paul Haupt Verlag, Bern

    Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Article  Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Chang Biol 19:229–240

    Article  PubMed  Google Scholar 

  • Ristic Z, Cass DD (1991) Chloroplast structure after water shortage and high temperature in two lines of Zea mays L. that differ in drought resistance. Bot Gaz Chicago 152:186–194

    Article  Google Scholar 

  • Salleo S, Lo Gullo MA, Raimondo F, Nardini A (2001) Vulnerability to cavitation of leaf minor veins: any impact on leaf gas exchange? Plant Cell Envir 24:851–859

    Article  Google Scholar 

  • Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366

    Article  CAS  PubMed  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen B, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–399

    Article  CAS  Google Scholar 

  • Sheffield J, Wood E F (2008) Projected changes in drought occurrence under future global warming from Multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

  • Slewinski ThL, Zhang C, Turgeon R (2013) Structural and functional heterogeneity in phloem loading and transport. Front Plant Sci 4:1–11

    Google Scholar 

  • Soda C, Bussotti F, Grossoni P, Barnes J, Mori B, Tani C (2000) Impacts of urban levels of ozone on Pinus halepensis foliage. Environ Exp Bot 44:69–82

    Article  CAS  PubMed  Google Scholar 

  • Tevini M, Steinmüller D (1985) Composition and function of plastoglobuli. Planta 163:91–96

    Article  CAS  PubMed  Google Scholar 

  • Vassileva V, Demirevska K, Simova-Stoilova L, Petrova T, Tsenov N, Feller U (2012) Long-term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar-specific manner. J Agron Crop Sci 198:104–117

    Article  Google Scholar 

  • Vollenweider P, Günthardt-Goerg MS (2006) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 140:562–571

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider P, Fenn ME, Menard T, Günthardt-Goerg M, Bytnerowicz A (2013) Structural injury underlying mottling in ponderosa pine needles exposed to ambient ozone concentrations in the San Bernardino Mountains near Los Angeles, California. Trees 27:895–911

    Article  CAS  Google Scholar 

  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L (2010) EXPO, an exocyst-positive organelle, distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22:4009–4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis KG, Polito VS, Labavitch JM (1988) Microfluorometry of pectic materials in the dehiscence zone of almond (Prunus dulcis). J Histochem Cytochem 36:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Wetzel S, Demmers C, Greenwood JS (1989) Spherical organelles, analogous to seed protein bodies, fluctuate seasonally inparenchymatous cells of hardwoods. Can J Bot 67:3439–3445

    Article  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zellnig G, Perktold A, Zechmann B (2010) Fine structural quantification of drought-stressed Picea abies (L.) organelles based on 3D reconstructions. Protoplasma 243:129–136

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Technical assistance and support by trainees, microscopy apprentices and the Center for Microscopy and Image Analysis of the University of Zurich are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Vollenweider.

Ethics declarations

Conflict of interest

Authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Communicated by K. Masaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollenweider, P., Menard, T., Arend, M. et al. Structural changes associated with drought stress symptoms in foliage of Central European oaks. Trees 30, 883–900 (2016). https://doi.org/10.1007/s00468-015-1329-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1329-6

Keywords

Navigation