Skip to main content
Log in

Fine structural quantification of drought-stressed Picea abies (L.) organelles based on 3D reconstructions

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Ultrastructural investigations of cells and organelles by transmission electron microscopy (TEM) usually lead to two-dimensional information of cell structures without supplying exact quantitative data due to the limited number of investigated ultrathin sections. This can lead to misinterpretation of observed structures especially in context of their three-dimensional (3D) assembly. 3D investigations and quantitative morphometric analysis are therefore essential to get detailed information about the arrangement and the amount of subcellular structures inside a cell or organelle, respectively, especially when the plant sample was exposed to environmental stress. In the present research, serial sectioned chloroplasts, mitochondria, and peroxisomes from first year spruce needles (Picea abies (L.) Karst.) were 3D reconstructed and digitally measured using a computer-supported image analysis system in order to obtain a detailed quantitative characterization of complete cell organelles including precise morphological data of drought-induced fine structural changes. In control plants, chloroplast volume was composed of 56% stroma, 15% starch, 27% thylakoids, and 2% plastoglobules. In drought-stressed chloroplasts, the relative volume of both the thylakoids and the plastoglobules significantly increased to 37% and 12%, respectively. Chloroplasts of stressed plants differed from control plants not only in the mean thylakoid and plastoglobules content but also in the complete lack of starch grains. Mitochondria occurred in variable forms in both control and stressed samples. In stressed plants, mitochondria showed a significant smaller mean volume which was only 81% when compared with the control organelles. Peroxisomes were inconspicuous in both samples and their volume did not differ between control and drought-stressed samples. The present study shows that specific subcellular structures are subject to significant quantitative changes during drought stress of spruce needles giving a detailed insight in adaptation processes of the investigated cell organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong AF, Logan DC, Tobin AK, O'Toole P, Atkin OK (2006) Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ 29:940–949

    Article  PubMed  Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Bäck J, Neuvonen S, Huttunen S (1994) Pine needle growth and fine structure after prolonged acid rain treatment in the subarctic. Plant Cell Environ 17:1009–1021

    Article  Google Scholar 

  • Bigras FJ (2005) Photosynthetic response of white spruce families to drought stress. New Forest 29:135–148

    Article  Google Scholar 

  • Bortz J, Lienert GA, Bohenke K (2000) Verteilungsfreie Methoden in der Biostatistik. Springer, Berlin

    Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208:472–479

    Article  CAS  Google Scholar 

  • Brix H (1979) Effects of plant water stress on photosynthesis and survival of four conifers. Can J For Res 9:160–165

    Article  Google Scholar 

  • Charon J, Launay J, Carde JP (1987) Spatial organization and volume density of leucoplast in pine secretory cells. Protoplasma 138:45–53

    Article  Google Scholar 

  • Deo PM, Biswal UC, Biswal B (2006) Water stress-sensitized photoinhibition in senescing cotyledons of clusterbean: changes in thylakoid structures and inactivation of photosystem 2. Photosynthetica 44:187–192

    Article  CAS  Google Scholar 

  • Donohoe BS, Mogelsvang S, Staehelin LA (2006) Electron tomography of ER, Golgi and related membrane systems. Methods 39:154–162

    Article  CAS  PubMed  Google Scholar 

  • Duan B, Lu Y, Yin C, Junttila O, Li C (2005) Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiol Plant 124:476–484

    Article  CAS  Google Scholar 

  • Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust J Plant Physiol 26:421–433

    Article  Google Scholar 

  • Fink S (1988) Histological and cytological changes caused by air pollutants and other abiotic factors. In: Schulte-Hostede S, Darral NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier, Amsterdam, pp 36–54

    Google Scholar 

  • Fink S (1991) Structural changes in conifer needles due to Mg and K deficiency. Nutr Cycling Agroecosyst 27:23–27

    CAS  Google Scholar 

  • Forschner W, Schmitt V, Wild A (1989) Investigations on the starch content and ultrastructure of spruce needles relative to the occurrence of Novel forest decline. Bot Acta 102:208–221

    Google Scholar 

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Poll 147:467–488

    Article  Google Scholar 

  • Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31:646–657

    Article  PubMed  Google Scholar 

  • Hernández JA, Diaz-Vivancos P, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2006) Long-term PPV infection produces an oxidative stress in a susceptible apricot cultivar but not in a resistant cultivar. Phys Plant 126:140–152

    Article  Google Scholar 

  • Holopainen T, Anttonen S, Palomäki V, Kainulainen P, Holopainen JK (1996) Needle ultrastructure and starch content in Scots pine and Norway spruce after ozone fumigation. Can J Bot 74:67–76

    Article  CAS  Google Scholar 

  • Holzinger A, Buchner O, Lütz C, Hanson MR (2007a) Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma 230:23–30

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Wasteneys GO, Lütz C (2007b) Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna. Plant Biol 9:400–410

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Kwok EY, Hanson MR (2008) Effects of arc3, arc5 and arc6 mutations on plastid morphology and stromule formation in green and nongreen tissues of Arabidopsis thaliana. Photochem Photobiol 84:1324–1335

    Article  CAS  PubMed  Google Scholar 

  • Kierzkowski D, Samardakiewicz S, Robakowski P (2007) Variation in ultrastructure of chloroplasts in needles of silver fir (Abies alba Mill.) saplings growing under the canopies of diverse tree species. Pol J Ecol 55:821–825

    Google Scholar 

  • Kivimäenpää M, Sutinen S (2007) Microscopic structure of Scots pine (Pinus sylvestris (L.)) needles during ageing and autumnal senescence. Trees 21:645–659

    Article  Google Scholar 

  • Kivimäenpää M, Sutinen S, Karlsson PE, Selldén G (2003) Cell structural changes in the needles of Norway spruce exposed to long-term ozone and drought. Ann Bot 92:779–793

    Article  PubMed  Google Scholar 

  • Kivimäenpää M, Jönsson AM, Stjernquist I, Selldén G, Sutinen S (2004) The use of light and electron microscopy to assess the impact of ozone on Norway spruce needles. Environ Pollut 127:441–453

    Article  PubMed  Google Scholar 

  • Kivimäenpää M, Selldén G, Sutinen S (2005) Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics. Environ Pollut 137:466–475

    Article  PubMed  Google Scholar 

  • Lo YS, Hsiao LJ, Jane WN, Charng YC, Dai H, Chiang KS (2004) GFP-targeted mitochondria show heterogeneity of size, morphology, and dynamics in transgenic Nicotiana tabacum L. plants in vivo. Int J Plant Sci 165:949–955

    Article  Google Scholar 

  • Logan DC (2006a) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441

    Article  CAS  PubMed  Google Scholar 

  • Logan DC (2006b) The mitochondrial compartment. J Exp Bot 57:1225–1243

    Article  CAS  PubMed  Google Scholar 

  • Lütz C, Engel L (2007) Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate? Protoplasma 231:183–192

    Article  PubMed  Google Scholar 

  • Lütz C, Moser W (1977) On the cytology of high alpine plants. The ultrastructure of Ranunculus glacialis. Flora 166:21–34

    Google Scholar 

  • McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51

    Article  CAS  PubMed  Google Scholar 

  • Menzel D (1994) An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility. Protoplasma 179:166–171

    Article  Google Scholar 

  • Munné-Bosch S, Jubany-Marí T, Alegre L (2001) Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ 24:1319–1327

    Article  Google Scholar 

  • Mustárdy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum–stroma assembly. Plant Cell 20:2552–2557

    Article  PubMed  Google Scholar 

  • Natesan SKA, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787–797

    Article  CAS  PubMed  Google Scholar 

  • Ögren E, Öquist G (1985) Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves. Planta 166:380–388

    Article  Google Scholar 

  • Olmos E, Sanchez-Blanco MJ, Ferrendez T, Alarcon JJ (2007) Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol 9:77–84

    Article  CAS  PubMed  Google Scholar 

  • Pechová R, Kutík J, Holá D, Kočová M, Haisel D, Vičánková A (2003) The ultrastructure of chloroplasts, content of photosynthetic pigments, and photochemical activity of maize (Zea mays L.) as influenced by different concentrations of the herbicide amitrole. Photosynthetica 4:127–136

    Article  Google Scholar 

  • Peltier JP, Marigo G (1999) Drought adaptation in Fraxinus excelsior L.: physiological basis of the elastic adjustment. J Plant Physiol 154:529–535

    CAS  Google Scholar 

  • Pfeiffer S, Krupinska K (2005) New insights in thylakoid membrane organization. Plant Cell Physiol 46:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Rantanen L, Palomäki V, Harrison AF, Lucas PW, Mansfield TA (1994) Interactions between combined exposure to SO2 and NO2 and nutrient status of trees: effects on nutrient content and uptake, growth, needle ultrastructure and pigments. New Phytol 128:689–701

    Article  CAS  Google Scholar 

  • Rozak PR, Seiser RM, Wacholtz WF, Wise RR (2002) Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ 25:421–429

    Article  Google Scholar 

  • Ruetze M, Schmitt U (1988) Histologie der Alterung von Fichtennadeln (Picea abies (L.) Karst.). Angew Bot 62:9–20

    Google Scholar 

  • Schiffgens-Gruber A, Lütz C (1992) Ultrastructure of mesophyll cell chloroplasts of spruce needles exposed to O3, SO2 and NO2 alone and in combination. Environ Exp Bot 32:243–254

    Article  CAS  Google Scholar 

  • Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586

    Article  CAS  PubMed  Google Scholar 

  • Siefermann-Harms D, Boxler-Baldoma C, Von Wilpert K, Heumann HG (2004) The rapid yellowing of spruce at a mountain site in the Central Black Forest (Germany). Combined effects of Mg deficiency and ozone on biochemical, physiological and structural properties of the chloroplasts. J Plant Physiol 161:423–437

    Article  CAS  PubMed  Google Scholar 

  • Sutinen S (1987) Cytology of Norway spruce needles. II. Changes in yellowing spruces from the Taunus mountains, West Germany. Eur J For Path 17:74–85

    Article  Google Scholar 

  • Sutinen S, Skärby L, Wallin G, Sellden G (1990) Long-term exposure of Norway spruce, Picea abies (L.) Karst. to ozone in opentop chambers. New Phytol 115:345–355

    Article  CAS  Google Scholar 

  • Thomas H (1997) Chlorophyll a: a symptom and a regulator of plastid development. New Phytol 136:163–181

    Article  CAS  Google Scholar 

  • Whatley JM, Hawes LR, Horne JC, Kerr JDA (1982) The establishment of the plastid thylakoid system. New Phytol 90:619–629

    Article  Google Scholar 

  • Wheeler WS, Fagerberg WR (2000) Exposure to low levels of photosynthetically active radiation induces rapid increases in palisade cell chloroplast volume and thylakoid surface area in sunflower (Helianthus annuus L.). Protoplasma 212:38–45

    Article  Google Scholar 

  • Wulff A, Ahonen J, Kärenlampi L (1996) Cell ultrastructural evidence of accelerated ageing of Norway spruce needles in industrial areas. New Phytol 133:553–561

    Article  CAS  Google Scholar 

  • Yang Y, Liu Q, Han C, Qiao YZ, Yao XQ, Yin HJ (2007) Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosynthetica 45:613–619

    Article  CAS  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Yoshinaga K, Arimura SI, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann Bot 96:337–342

    Article  CAS  PubMed  Google Scholar 

  • Ytterberg AJ, Peltier JB, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Müller M, Zellnig G (2003) Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Arch Virol 148:1119–1133

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Müller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    Article  CAS  PubMed  Google Scholar 

  • Zellnig G, Perktold A (2003) Diurnal variation of chloroplast fine structures of spinach. Acta Biol Slov 46:43–47

    Google Scholar 

  • Zellnig G, Zechmann B, Perktold A (2004) Morphological and quantitative data of plastids and mitochondria within drought stressed spinach leaves. Protoplasma 223:221–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ing. Gerhard Graggaber for skillful technical assistance. This work was supported by the Austrian Science Fund (P13614-BIO and P-15374 to G.Z.).

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Zellnig.

Additional information

Dedicated to Professor Cornelius Lütz on occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellnig, G., Perktold, A. & Zechmann, B. Fine structural quantification of drought-stressed Picea abies (L.) organelles based on 3D reconstructions. Protoplasma 243, 129–136 (2010). https://doi.org/10.1007/s00709-009-0058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0058-3

Keywords

Navigation