Skip to main content
Log in

Body mass index is associated with hyperparathyroidism in pediatric kidney transplant recipients

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Hyperparathyroidism persists in up to 50% of pediatric kidney transplant recipients. The aims of this study were to describe the evolution of parathyroid hormone (PTH) in the first year after transplantation and to identify factors associated with hyperparathyroidism.

Methods

This retrospective study included children who underwent kidney transplantation at the University Hospitals of Ghent, Leuven, Rotterdam, or Amsterdam. Data from 149 patients were collected before and up to 12 months after transplantation. Severe hyperparathyroidism was defined as PTH 2-fold above the reference value. Factors associated with hyperparathyroidism and severe hyperparathyroidism were identified using multivariate logistic regression analysis.

Results

Before transplantation, 97 out of 137 patients (71%) had hyperparathyroidism. The probability of hyperparathyroidism and severe hyperparathyroidism declined from 0.49 and 0.17 to 0.29 and 0.09 at 3 and 12 months after transplantation, respectively. BMI SDS (β: 0.509; p = 0.011; 95% CI: 1.122–2.468), eGFR (β: − 0.227; p = 0.030; 95% CI: 0.649–0.978), and pre-transplant hyperparathyroidism (β: 1.149; p = 0.039; 95% CI: 1.062–9.369) were associated with hyperparathyroidism 12 months after transplantation. Pre-transplant hyperparathyroidism (β: 2.115; p = 0.044; 95% CI: 1.055–65.084), defined as intact parathormone (iPTH) levels > 65 ng/l (6.9 pmol/l) or 1-84 PTH > 58 ng/l (6.2 pmol/l), was associated with severe hyperparathyroidism at 3 months. Only eGFR (β: − 0.488; p = 0.010; 95% CI: 0.425–0.888) was inversely associated with severe hyperparathyroidism at 9 months after transplantation.

Conclusions

Allograft function remains the main determinant of severe hyperparathyroidism after transplantation. Our findings emphasize the importance of BMI and pre-transplant PTH control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CKD:

Chronic kidney disease

CKD-MBD:

Chronic kidney and disease-mineral and bone isorder

CKiD:

Chronic kidney disease in children

CI:

Confidence interval

eGFR:

Estimated glomerular filtration rate

FGF-23:

Fibroblast growth factor-23

IQR:

Inter quartile range

iPTH:

intact Parathormone

KDIGO:

Kidney Disease Improving Global Outcomes

PTH:

Parathyroid hormone

SDS:

Standard deviation score

UNL:

Upper limit of normal range

25(OH)D:

25-Hydroxyvitamin D

References

  1. Di Lullo L, House A, Gorini A, Santoboni A, Russo D, Ronco C (2015) Chronic kidney disease and cardiovascular complications. Heart Fail Rev 20:259–272

    PubMed  Google Scholar 

  2. Falkiewicz K, Bidzinska B, Demissie M, Boratynska M, Zmonarski SC, Tworowska K, Klinger M, Milewicz A, Patrzalek D (2005) Influence of vitamin D receptor gene polymorphisms on secondary hyperparathyroidism and bone density after kidney transplantation. Transplant Proc 37:1023–1025

    CAS  PubMed  Google Scholar 

  3. Guzzo I, Di Zazzo G, Laurenzi C, Rava L, Giannone G, Picca S, Dello Strologo L (2011) Parathyroid hormone levels in long-term renal transplant children and adolescents. Pediatr Nephrol 26:2051–2057

    PubMed  Google Scholar 

  4. Matsuda-Abedini M, Portale AA, Shah A, Neuhaus J, McEnhill M, Mathias RS (2006) Persistent secondary hyperparathyroidism after renal transplantation in children. Pediatr Nephrol 21:413–418

    PubMed  Google Scholar 

  5. Lou I, Foley D, Odorico SK, Leverson G, Schneider DF, Sippel R, Chen H (2015) How well does renal transplantation cure hyperparathyroidism? Ann Surg 262:653–659

    PubMed  PubMed Central  Google Scholar 

  6. Wesseling-Perry K, Tsai EW, Ettenger RB, Juppner H, Salusky IB (2011) Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol Dial Transplant 26:3779–3784

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Arbeiter AK, Buscher R, Petersenn S, Hauffa BP, Mann K, Hoyer PF (2009) Ghrelin and other appetite-regulating hormones in paediatric patients with chronic renal failure during dialysis and following kidney transplantation. Nephrol Dial Transplant 24:643–646

    CAS  PubMed  Google Scholar 

  8. Dura-Trave T, Gallinas-Victoriano F, Chueca-Guindulain MJ, Berrade-Zubiri S, Urretavizcaya-Martinez M, Ahmed-Mohamed L (2019) Assessment of vitamin D status and parathyroid hormone during a combined intervention for the treatment of childhood obesity. Nutr Diabetes 9:18

    PubMed  PubMed Central  Google Scholar 

  9. Hu X, Ma X, Luo Y, Xu Y, Xiong Q, Pan X, Xiao Y, Bao Y, Jia W (2018) Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin Nutr 37:223–228

    CAS  PubMed  Google Scholar 

  10. Shroff R, Knott C, Gullett A, Wells D, Marks SD, Rees L (2011) Vitamin D deficiency is associated with short stature and may influence blood pressure control in paediatric renal transplant recipients. Pediatr Nephrol 26:2227–2233

    PubMed  Google Scholar 

  11. Tuchman S, Kalkwarf HJ, Zemel BS, Shults J, Wetzsteon RJ, Foerster D, Strife CF, Leonard MB (2010) Vitamin D deficiency and parathyroid hormone levels following renal transplantation in children. Pediatr Nephrol 25:2509–2516

    PubMed  Google Scholar 

  12. Courbebaisse M, Thervet E, Souberbielle JC, Zuber J, Eladari D, Martinez F, Mamzer-Bruneel MF, Urena P, Legendre C, Friedlander G, Prie D (2009) Effects of vitamin D supplementation on the calcium-phosphate balance in renal transplant patients. Kidney Int 75:646–651

    CAS  PubMed  Google Scholar 

  13. Prytula A, Cransberg K, Raes A (2017) CYP3A4 is a crosslink between vitamin D and calcineurin inhibitors in solid organ transplant recipients: implications for bone health. Pharm J 17:481–487

    CAS  Google Scholar 

  14. Prytula A, Cransberg K, Raes A (2019) Drug-metabolizing enzymes CYP3A as a link between tacrolimus and vitamin D in renal transplant recipients: is it relevant in clinical practice? Pediatr Nephrol 34:1201–1210

    PubMed  Google Scholar 

  15. Uslu Gokceoglu A, Comak E, Dogan CS, Koyun M, Akbas H, Akman S (2014) Magnesium excretion and hypomagnesemia in pediatric renal transplant recipients. Ren Fail 36:1056–1059

    CAS  PubMed  Google Scholar 

  16. Haffner D, Leifheit-Nestler M (2019) CKD-MBD post kidney transplantation. Pediatr Nephrol. https://doi.org/10.1007/s00467-019-04421-5

  17. Van de Cauter J, Sennesael J, Haentjens P (2011) Long-term evolution of the mineral metabolism after renal transplantation: a prospective, single-center cohort study. Transplant Proc 43:3470–3475

    PubMed  Google Scholar 

  18. Lau WL, Obi Y, Kalantar-Zadeh K (2018) Parathyroidectomy in the management of secondary hyperparathyroidism. Clin J Am Soc Nephrol 13:952–961

    PubMed  PubMed Central  Google Scholar 

  19. Jenabi A, Jabbari M, Ziaie H (2017) Comparing the values of intact parathormone and 1- 84 PTH to predict hyperparathyroidism in hemodialysis patients. J Nephropathol 6:248–253

    PubMed  PubMed Central  Google Scholar 

  20. Wang AY, Akizawa T, Bavanandan S, Hamano T, Liew A, Lu KC, Lumlertgul D, Oh KH, Zhao MH, Ka-Shun Fung S, Obi Y, Sumida K, Choong LHL, Goh BL, Hao CM, Kwon YJ, Tarng DC, Zuo L, Wheeler DC, Tsukamoto Y, Fukagawa M (2019) 2017 Kidney Disease: Improving Global Outcomes (KDIGO) Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) guideline update implementation: Asia Summit Conference Report. Kidney Int Rep 4:1523–1537

    PubMed  PubMed Central  Google Scholar 

  21. Kovacevic B, Ignjatovic M, Zivaljevic V, Cuk V, Scepanovic M, Petrovic Z, Paunovic I (2012) Parathyroidectomy for the attainment of NKF-K/DOQI™ and KDIGO recommended values for bone and mineral metabolism in dialysis patients with uncontrollable secondary hyperparathyroidism. Langenbeck's Arch Surg 397:413–420

    Google Scholar 

  22. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Munoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Filler G, Lee M (2018) Educational review: measurement of GFR in special populations. Pediatr Nephrol 33:2037–2046

    PubMed  Google Scholar 

  24. Ref. 1-20050604-NP/2-20/F v, kul © (2004) Groeicurve meisjes (2 - 20 jaar)

  25. Ref. 1-20050604-NP/2-20/M v, kul © (2005) Groeicurve jongens (2 - 20 jaar)

  26. TNO (2010) Groeidiagram meisjes 1-21 jaar Vijfde landelijke groeistudie

  27. TNO (2010) Groeidiagram Jongens 1-21 jaar. Vijfde Landelijke Groeistudie

  28. Flegal KM, Tabak CJ, Ogden CL (2006) Overweight in children: definitions and interpretation. Health Educ Res 21:755–760

    PubMed  Google Scholar 

  29. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonthuis M, Busutti M, van Stralen KJ, Jager KJ, Baiko S, Bakkaloglu S, Battelino N, Gaydarova M, Gianoglio B, Parvex P, Gomes C, Heaf JG, Podracka L, Kuzmanovska D, Molchanova MS, Pankratenko TE, Papachristou F, Reusz G, Sanahuja MJ, Shroff R, Groothoff JW, Schaefer F, Verrina E (2015) Mineral metabolism in European children living with a renal transplant: a European society for paediatric nephrology/european renal association-European dialysis and transplant association registry study. Clin J Am Soc Nephrol 10:767–775

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim DH, Lee JH, Han DJ, Park YS (2018) Risk factors for persistent hyperparathyroidism in children with stable renal function after kidney transplantation. Pediatr Transplant. https://doi.org/10.1111/petr13238

  32. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 92:26–36

    PubMed  Google Scholar 

  33. Hu MC, Shiizaki K, Kuro-o M, Moe OW (2013) Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 75:503–533

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Haffner D, Schuler U (2014) Metabolic bone disease after renal transplantation. Curr Opin Pediatr 26:198–206

    CAS  PubMed  Google Scholar 

  35. Wesseling-Perry K, Pereira RC, Tsai E, Ettenger R, Juppner H, Salusky IB (2013) FGF23 and mineral metabolism in the early post-renal transplantation period. Pediatr Nephrol 28:2207–2215

    PubMed  PubMed Central  Google Scholar 

  36. Ladhani M, Lade S, Alexander SI, Baur LA, Clayton PA, McDonald S, Craig JC, Wong G (2017) Obesity in pediatric kidney transplant recipients and the risks of acute rejection, graft loss and death. Pediatr Nephrol 32:1443–1450

    PubMed  Google Scholar 

  37. Kaur K, Jun D, Grodstein E, Singer P, Castellanos L, Teperman L, Molmenti E, Fahmy A, Frank R, Infante L, Sethna CB (2018) Outcomes of underweight, overweight, and obese pediatric kidney transplant recipients. Pediatr Nephrol 33:2353–2362

    PubMed  Google Scholar 

  38. Reinehr T, de Sousa G, Alexy U, Kersting M, Andler W (2007) Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol 157:225–232

    CAS  PubMed  Google Scholar 

  39. Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM (2016) Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy. Front Physiol 7:439

    PubMed  PubMed Central  Google Scholar 

  40. Nogueira PC, Rey N, Said MH, Cochat P (1997) Evolution of hyperparathyroidism after renal transplantation in children--effect of pre-emptive transplantation and duration of dialysis. Nephrol Dial Transplant 12:984–987

    CAS  PubMed  Google Scholar 

  41. Hasegawa K, Motoyama O, Shishido S, Aikawa A (2019) Mineral disorders in pediatric pre-emptive kidney transplantation. Pediatr Int 61:587–594

    CAS  PubMed  Google Scholar 

  42. Nakai K, Fujii H, Ishimura T, Fujisawa M, Nishi S (2017) Incidence and risk factors of persistent hyperparathyroidism after kidney transplantation. Transplant Proc 49:53–56

    CAS  PubMed  Google Scholar 

  43. Cunningham J, Locatelli F, Rodriguez M (2011) Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol 6:913–921

    CAS  PubMed  Google Scholar 

  44. Vetter T, Lohse MJ (2002) Magnesium and the parathyroid. Curr Opin Nephrol Hypertens 11:403–410

    PubMed  Google Scholar 

  45. Preka E, Wan M, Price KL, Long DA, Aitkenhead H, Shroff R (2020) Free 25-hydroxyvitamin-D concentrations are lower in children with renal transplant compared with chronic kidney disease. Pediatr Nephrol 35:1069–1079

    PubMed  PubMed Central  Google Scholar 

  46. Harambat J, Kunzmann K, Azukaitis K, Bayazit AK, Canpolat N, Doyon A, Duzova A, Niemirska A, Sozeri B, Thurn-Valsassina D, Anarat A, Bessenay L, Candan C, Peco-Antic A, Yilmaz A, Tschumi S, Testa S, Jankauskiene A, Erdogan H, Rosales A, Alpay H, Lugani F, Arbeiter K, Mencarelli F, Kiyak A, Donmez O, Drozdz D, Melk A, Querfeld U, Schaefer F (2017) Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease. Kidney Int 92:1507–1514

    CAS  PubMed  Google Scholar 

  47. Verghese PS (2017) Pediatric kidney transplantation: a historical review. Pediatr Res 81:259–264

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Prytuła.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanderstraeten, K., De Pauw, R., Knops, N. et al. Body mass index is associated with hyperparathyroidism in pediatric kidney transplant recipients. Pediatr Nephrol 36, 977–986 (2021). https://doi.org/10.1007/s00467-020-04796-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04796-w

Keywords

Navigation