Skip to main content

Advertisement

Log in

Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Minimal change disease (MCD) is the most common type of nephrotic syndrome in children and adolescents. The pathogenesis of proteinuria in this condition is currently being reassessed. Following the Shalhoub hypothesis, most efforts have been placed on identifying the putative circulating factor, but recent advancement in podocyte biology has focused attention on the molecular changes at the glomerular capillary wall, which could explain the mechanism of proteinuria in MCD. This report critically reviews current knowledge on the different postulated mechanisms at the glomerular capillary wall level for increased permeability to plasma proteins in MCD. The report helps describe the rationale behind novel therapies and suggests future targeted therapies for MCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Churg J, Habib R, White HR (1970) Pathology of the nephrotic syndrome in children: A report for the International Study of Kidney Disease in Children. Lancet 760:1299–1302

    Article  CAS  PubMed  Google Scholar 

  2. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Egbrink o (2000) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  Google Scholar 

  3. Kanwar YS, Farquhar MG (1979) Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A 76:1300–1307

    Google Scholar 

  4. Nielsen JS, McNagny KM (2009) The role of podocalyxin in health and disease. J Am Soc Nephrol 20:1669–1676

    Article  CAS  PubMed  Google Scholar 

  5. Welsh GI, Saleem MA (2011) The podocyte cytoskeleton--key to a functioning glomerulus in health and disease. Nat Rev Nephrol 8:14–21

    Article  PubMed  Google Scholar 

  6. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    Article  PubMed  Google Scholar 

  7. Li X, Chuang PY, D’Agati VD, Dai Y, Yacoub R, Fu J, Xu J, Taku O, Premsrirut PK, Holzman LB, He JC (2015) Nephrin Preserves Podocyte Viability and Glomerular Structure and Function in Adult Kidneys. J Am Soc Nephrol 26:2361–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones N, New LA, Fortino MA, Eremina V, Ruston J, Blasutig IM, Aoudjit L, Zou Y, Liu X, Yu GL, Takano T, Quaggin SE, Pawson T (2009) Nck proteins maintain the adult glomerular filtration barrier. J Am Soc Nephrol 20:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. New LA, Keyvani Chahi A, Jones N (2013) Direct regulation of nephrin tyrosine phosphorylation by Nck adaptor proteins. J Biol Chem 288:1500–1510

    Article  CAS  PubMed  Google Scholar 

  10. George B, Verma R, Soofi AA, Garg P, Zhang J, Park TJ, Giardino L, Ryzhova L, Johnstone DB, Wong H, Nihalani D, Salant DJ, Hanks SK, Curran T, Rastaldi MP, Holzman LB (2012) Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J Clin Invest 122:674–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP (1993) Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet 2:1651–1657

    Article  CAS  PubMed  Google Scholar 

  13. Raats CJ, Van Den Born J, Bakker MA, Oppers-Walgreen B, Pisa BJ, Dijkman HB, Assmann KJ, Berden JH (2000) Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies. Am J Pathol 156:1749–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, Lanaspa MA, Rivard C, Maruyama S, Garin EH, Johnson RJ (2013) Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant 28:1439–1446

    Article  CAS  PubMed  Google Scholar 

  15. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3:85ra46

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70:1038–1045

    Article  CAS  PubMed  Google Scholar 

  17. Ohashi T, Uchida K, Uchida S, Sasaki S, Nitta K (2011) Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin Exp Nephrol 15:688–693

    Article  CAS  PubMed  Google Scholar 

  18. Carrie BJ, Salyer WR, Myers BD (1981) Minimal change nephropathy: an electrochemical disorder of the glomerular membrane. Am J Med 70:262–268

    Article  CAS  PubMed  Google Scholar 

  19. Ryan GB, Karnosvsky MJ (1975) An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int 8:219–232

    Article  CAS  PubMed  Google Scholar 

  20. Washizawa K, Kasai S, Mori T, Komiyama A, Shigematsu H (1993) Ultrastructural alteration of glomerular anionic sites in nephrotic patients. Pediatr Nephrol 7:1–5

    Article  CAS  PubMed  Google Scholar 

  21. van der Born J, van der Heuval PWJ, Bakker MAH, Veerkamp JH, Assmann KJ, Weening JJ, Berden JH (1993) Distribution of GBM heparan sulfate proteoglycan core protein and side changes in human glomerular diseases. Kidney Int 43:454–463

    Article  PubMed  Google Scholar 

  22. Mitsuhashi H, Tsukada Y, Ono K, Yano S, Naruse T (1993) Urine glycosaminoglycans and heparan sulfate excretions in adult patients with glomerular diseases. Clin Nephrol 39:231–238

    CAS  PubMed  Google Scholar 

  23. Goldberg S, Harvey JS, Cunningham J, Tryggvason K, Miner JH (2009) Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant 24:2044–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen S, Wassenhove-McCarthy DJ, Yamaguchi Y, Holzman LB, van Kuppevelt TH, Jenniskens GJ, Wijnhoven TJ, Woods AC, McCarthy KJ (2008) Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int 74:289–299

    Article  CAS  PubMed  Google Scholar 

  25. Van Den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, Rops AL, Lensen JF, van den Heuvel LP, van Kuppevelt TH, Vlodavsky I, Berden JH, van der Vlag J (2008) Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int 73:278–287

    Article  PubMed  Google Scholar 

  26. Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17:117–122

    Article  CAS  PubMed  Google Scholar 

  27. Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS (2014) Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20:37–46

    Article  CAS  PubMed  Google Scholar 

  28. Cara-Fuentes G, Segarra A, Garin EH (2015) CD80 and angiopoietin-like 4 in glomerulopathies (abstract). J Am Soc Nephrol 26:451A

    Google Scholar 

  29. Garin EH, Blanchard DK, Matsushima K, Djeu JY (1994) IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int 45:1311–1317

    Article  CAS  PubMed  Google Scholar 

  30. Cho MH, Lee HS, Choe BH, Kwon SH, Chung KY, Koo JH, Ko CW (2003) Interleukin-8 and tumor necrosis factor-alpha are increased in minimal change disease but do not alter albumin permeability. Am J Nephrol 23:260–266

    Article  CAS  PubMed  Google Scholar 

  31. Garin EH, Laflam P, Chandler L (1998) Anti-interleukin 8 antibody abolishes effects of lipoid nephrosis cytokine. Pediatr Nephrol 12:381–385

    Article  CAS  PubMed  Google Scholar 

  32. Garin EH, West L, Zheng W (1997) Effect of interleukin-8 on glomerular sulfated compounds and albuminuria. Pediatr Nephrol 11:274–279

    Article  CAS  PubMed  Google Scholar 

  33. Hvidberg V, Maniecki MB, Jacobsen C, Højrup P, Møller HJ, Moestrup SK (2005) Identification of the receptor scavenging hemopexin-heme complexes. Blood 1:2572–2579

    Article  Google Scholar 

  34. Bakker WW, Baller JF, van Luijk WH (1988) A kallikrein-like molecule and plasma vasoactivity in minimal change disease. Increased turnover in relapse versus remission. Contrib Nephrol 67:31–36

    Article  CAS  PubMed  Google Scholar 

  35. Cheung PK, Klok PA, Bakker WW (1996) Minimal change-like glomerular alterations induced by a human plasma factor. Nephron 74:586–593

    Article  CAS  PubMed  Google Scholar 

  36. Cheung PK, Klok PA, Baller JF, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57:1512–1520

    Article  CAS  PubMed  Google Scholar 

  37. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, Kapojos JJ (2005) Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 20:1410–1415

    Article  PubMed  Google Scholar 

  38. Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW (1999) Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 10:1700–1708

    CAS  PubMed  Google Scholar 

  39. Hrkal Z, Kuzelová K, Muller-Eberhard U, Stern R (1996) Hyaluronan-binding properties of human serum hemopexin. FEBS Lett 383:72–74

    Article  CAS  PubMed  Google Scholar 

  40. Bakker WW, Borghuis T, Harmsen MC, van den Berg A, Kema IP, Niezen KE, Kapojos JJ (2005) Protease activity of plasma hemopexin. Kidney Int 68:603–610

    Article  CAS  PubMed  Google Scholar 

  41. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, Mathieson PW, Bakker WW, Saleem MA (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 19:2140–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheung PK, Baller JF, Bakker WW (1998) Oxygen-dependent injury by a human plasma factor associated with minimal change disease. Pediatr Nephrol 12:452–458

    Article  CAS  PubMed  Google Scholar 

  43. Cheung PK (1996) Plasma factor associated with Minimal Disease. Interactions of 100KF with the glomerular filtration barrier. An experimental study. s.n., 1996. 140 p (Doctorial Thesis).

  44. Kavoura E, Gakiopoulou H, Paraskevakou H, Marinaki S, Agrogiannis G, Stofas A, Boletis I, Patsouris E, Lazaris AC (2011) Immunohistochemical evaluation of podocalyxin expression in glomerulopathies associated with nephrotic syndrome. Hum Pathol 42:227–235

    Article  CAS  PubMed  Google Scholar 

  45. Hara M, Yanagihara T, Takada T, Itoh M, Adachi Y, Yoshizumi A, Kawasaki K, Yamamoto T, Kihara I (1994) Podocalyxin on the glomerular epithelial cells is preserved well in various glomerular diseases. Nephron 67:123–124

    Article  CAS  PubMed  Google Scholar 

  46. Wernerson A, Dunér F, Pettersson E, Widholm SM, Berg U, Ruotsalainen V, Tryggvason K, Hultenby K, Söderberg M (2003) Altered ultrastructural distribution of nephrin in minimal change nephrotic syndrome. Nephrol Dial Transplant 18:70–76

    Article  CAS  PubMed  Google Scholar 

  47. Patrakka J, Ruotsalainen V, Ketola I, Holmberg C, Heikinheimo M, Tryggvason K, Jalanko H (2001) Expression of nephrin in pediatric kidney diseases. J Am Soc Nephrol 12:289–296

    CAS  PubMed  Google Scholar 

  48. Furness PN, Hall LL, Shaw JA, Pringle JH (1999) Glomerular expression of nephrin is decreased in acquired human nephrotic syndrome. Nephrol Dial Transplant 14:1234–1237

    Article  CAS  PubMed  Google Scholar 

  49. Doublier S, Ruotsalainen V, Salvidio G, Lupia E, Biancone L, Conaldi PG, Reponen P, Tryggvason K, Camussi G (2001) Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am J Pathol 158:1723–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Uchida K, Suzuki K, Iwamoto M, Kawachi H, Ohno M, Horita S, Nitta K (2008) Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int 73:926–932

    Article  CAS  PubMed  Google Scholar 

  51. Cara-Fuentes G, Garin EH (2014) Nephrin phosphorylation in MCD (abstract). J Am Soc Nephrol 25:738A

    Google Scholar 

  52. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, Johnson RJ (2009) Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 20:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, Johnson RJ (2010) Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 78:296–302

    Article  CAS  PubMed  Google Scholar 

  55. Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, Jordan SC, Yap HK (2007) Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 18:1476–1485

    Article  CAS  PubMed  Google Scholar 

  56. Ishimoto T, Cara-Fuentes G, Wang H, Shimada M, Wasserfall CH, Winter WE, Rivard CJ, Araya CE, Saleem MA, Mathieson PW, Johnson RJ, Garin EH (2013) Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr Nephrol 28:1803–1812

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kanai T, Shiraishi H, Yamagata T, Ito T, Odaka J, Saito T, Aoyagi J, Momoi MY (2010) Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol 14:578–583

    Article  CAS  PubMed  Google Scholar 

  58. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Wymer DT, Yamabe H, Mathieson PW, Saleem MA, Garin EH, Johnson RJ (2012) Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol Dial Transplant 27:81–89

    Article  CAS  PubMed  Google Scholar 

  59. Srivastava T, Sharma M, Yew KH, Sharma R, Duncan RS, Saleem MA, McCarthy ET, Kats A, Cudmore PA, Alon US, Harrison CJ (2013) LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile. J Cell Commun Signal 7:49–60

    Article  PubMed  Google Scholar 

  60. MacDonald NE, Wolfish N, McLaine P, Phipps P, Rossier E (1986) Role of respiratory viruses in exacerbations of primary nephrotic syndrome. J Pediatr 108:378–382

    Article  CAS  PubMed  Google Scholar 

  61. Zhang SY, Kamal M, Dahan K, Pawlak A, Ory V, Desvaux D, Audard V, Candelier M, BenMohamed F, Matignon M, Christov C, Decrouy X, Bernard V, Mangiapan G, Lang P, Guellaën G, Ronco P, Sahali D (2010) c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal 3:ra39

    PubMed  PubMed Central  Google Scholar 

  62. Audard V, Zhang SY, Copie-Bergman C, Rucker-Martin C, Ory V, Candelier M, Baia M, Lang P, Pawlak A, Sahali D (2010) Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-Reed Sternberg cells and podocytes. Blood 115:3756–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Denhez B, Lizotte F, Guimond MO, Jones N, Takano T, Geraldes P (2015) Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes. J Biol Chem 290:350–358

    Article  CAS  PubMed  Google Scholar 

  64. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R

    Article  CAS  PubMed  Google Scholar 

  65. Shimizu M, Khoshnoodi J, Akimoto Y, Kawakami H, Hirano H, Higashihara E, Hosoyamada M, Sekine Y, Kurayama R, Kurayama H, Joh K, Hirabayashi J, Kasai K, Tryggvason K, Ito N, Yan K (2009) Expression of galectin-1, a new component of slit diaphragm, is altered in minimal change nephrotic syndrome. Lab Invest 89:178–195

    Article  CAS  PubMed  Google Scholar 

  66. Ostalska-Nowicka D, Zachwieja J, Nowicki M, Kaczmarek E, Siwińska A, Witt M (2007) Immunohistochemical detection of galectin-1 in renal biopsy specimens of children and its possible role in proteinuric glomerulopathies. Histopathology 51:468–476

    Article  CAS  PubMed  Google Scholar 

  67. Srivastava T, Garola RE, Whiting JM, Alon US (2001) Synaptopodin expression in idiopathic nephrotic syndrome of childhood. Kidney Int 59:118–125

    Article  CAS  PubMed  Google Scholar 

  68. Barisoni L, Kriz W, Mundel P, D’Agati V (1999) The dysregulated podocyte A novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10:51–61

    CAS  PubMed  Google Scholar 

  69. Horinouchi I, Nakazato H, Kawano T, Iyama K, Furuse A, Arizono K, Machida J, Sakamoto T, Endo F, Hattori S (2003) In situ evaluation of podocin in normal and glomerular diseases. Kidney Int 64:2092–2099

    Article  CAS  PubMed  Google Scholar 

  70. Guan N, Ding J, Zhang J, Yang J (2003) Expression of nephrin, podocin, alpha-actinin, and WT1 in children with nephrotic syndrome. Pediatr Nephrol 18:1122–1127

    Article  PubMed  Google Scholar 

  71. Vogtländer NP, van der Vlag J, Bakker MA, Dijkman HB, Wevers RA, Campbell KP, Wetzels JF, Berden JH (2010) Expression of sialidase and dystroglycan in human glomerular diseases. Nephrol Dial Transplant 25:478–484

    Article  PubMed  Google Scholar 

  72. Regele HM, Fillipovic E, Langer B, Poczewki H, Kraxberger I, Bittner RE, Kerjaschki D (2000) Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J Am Soc Nephrol 11:403–412

    CAS  PubMed  Google Scholar 

  73. Kojima K, Nosaka H, Kishimoto NY, Fukuda S, Shimada M, Kodaka K, Saito F, Matsumura K, Shimizu T, Toda T, Takeda S, Kawachi H, Uchida S (2011) Defective glycosylation of α-dystroglycan contributes to podocyte flattening. Kidney Int 79:311–316

    Article  CAS  PubMed  Google Scholar 

  74. Bains R, Furness PN, Critchley DR (1997) A quantitative immunofluorescence study of glomerular cell adhesion proteins in proteinuric states. J Pathol 183:272–280

    Article  CAS  PubMed  Google Scholar 

  75. Baraldi A, Furci L, Zambruno G, Rubbiani E, Annessi G, Lusvarghi E (1992) Very late activation-3 integrin is the dominant beta 1-integrin on the glomerular capillary wall: an immunofluorescence study in nephrotic syndrome. Nephron 62:382–388

    Article  CAS  PubMed  Google Scholar 

  76. Lahdenkari AT, Lounatmaa K, Patrakka J, Holmberg C, Wartiovaara J, Kestilä M, Koskimies O, Jalanko H (2004) Podocytes are firmly attached to glomerular basement membrane in kidneys with heavy proteinuria. J Am Soc Nephrol 15:2611–2618

    Article  PubMed  Google Scholar 

  77. Tejani AT, Butt K, Trachtman H, Suthanthiran M, Rosenthal CJ, Khawar MR (1988) Cyclosporine A induced remission of relapsing nephrotic syndrome in children. Kidney Int 33:729–734

    Article  CAS  PubMed  Google Scholar 

  78. Hauser PV, Pippin JW, Kaiser C, Krofft RD, Brinkkoetter PT, Hudkins KL, Kerjaschki D, Reiser J, Alpers CE, Shankland SJ (2010) Novel siRNA delivery system to target podocytes in vivo. PLoS One 5:e9463

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH (2014) Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol 29:2333–2340

    Article  PubMed  PubMed Central  Google Scholar 

  80. Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, Alachkar N, Johnson RJ (2015) Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol 30:469–477

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo H. Garin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cara-Fuentes, G., Clapp, W.L., Johnson, R.J. et al. Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms. Pediatr Nephrol 31, 2179–2189 (2016). https://doi.org/10.1007/s00467-016-3379-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3379-4

Keywords

Navigation