Skip to main content
Log in

A three-dimensional FEM–DEM technique for predicting the evolution of fracture in geomaterials and concrete

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301–314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Astm standard d638-10 (2003) Standard test method for tensile properties of plastics. ASTM international, West Conshohocken, PA. https://doi.org/10.1520/d0638-10, www.astm.org

  2. Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Proceedings of the 5th meeting of the Brazilian association for technical rules, pp 126–129 (in portuguese)

  3. Cervera M, Chiumenti M, Agelet de Saracibar C (2004) Shear band localization via local \(\text{ J }_{2}\) continuum damage mechanics. Comput Methods Appl Mech Eng 193:849–880

    Article  MATH  Google Scholar 

  4. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics part I: formulation. Comput Methods Appl Mech Eng 199:2559–2570

    Article  MathSciNet  MATH  Google Scholar 

  5. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics part II: strain localization. Comput Methods Appl Mech Eng 199:2571–2589

    Article  MathSciNet  MATH  Google Scholar 

  6. Cervera M, Chiumenti M, Codina R (2011) Mesh objective modelling of cracks using continuous linear strain and displacements interpolations. Int J Numer Methods Eng 87:962–987

    Article  MATH  Google Scholar 

  7. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  8. Ground accelerogram from el-centro, imperial valley irrigation district (comp s00e). http://www.eng.ucy.ac.cy/petros/earthquakes/eq1.txt

  9. Johnson PR, Petrinic N, Sli E (2005) Element-splitting for simulation of fracture in 3D solid continua. In: VIII International conference on computational plasticity, Barcelona

  10. Katagiri S, Takada S (2002–03) Development of FEM–DEM combined method for fracture analysis of a continuous media. Memoirs of the Graduate School of Science and Technology, Kobe University Japan, vol 20A, pp 65–79

  11. Labra C (2012) Advances in the development of the discrete element method for excavation processes. Ph.D. thesis, Barcelona

  12. Labra C, Oñate E (2009) High-density sphere packing for discrete element method simulations. Commun Numer Methods Eng 25(7):837–849

    Article  MathSciNet  MATH  Google Scholar 

  13. Lopez J, Oller S, Oñate E, Lubliner J (1999) A homogeneous constitutive model for masonry. Int J Numer Methods Eng 46:1651–1671

    Article  MathSciNet  MATH  Google Scholar 

  14. Luong M (1990) Tensile and shear strengths of concrete and rock. Eng Fract Mech 1–3(35):127–135

    Article  Google Scholar 

  15. Mishnaevsky L Jr, Lippmann N, Schmauder S (2003) Computational modelling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials. Int J Fract 120:581–600

    Article  Google Scholar 

  16. Munjiza A (2004) The combined finite-discrete element method. Wiley, New York. ISBN: 0-470-84199-0

  17. Oñate E, Labra C, Zárate F, Rojek J, Miquel J (2005) Avances en el desarrollo de los métodos de elementos discretos y de elementos finitos para el análisis de problemas de fractura. Anales de Mecánica de la Fractura 22:27–34

    Google Scholar 

  18. Oñate E, Zárate F, Celigueta MA, González JM, Miquel J, Carbonell JM, Arrufat F, Latorre S, Santasusana M (2017) Advances in the DEM and coupled DEM and FEM techniques in non linear solid mechanics. In: Oñate E et al (eds) Advances in computational plasticity. Springer, Berlin

    Google Scholar 

  19. Oñate E, Zárate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandijota R, Valiullin K, Ring L (2015) A local constitutive model for the discrete element method application to geomaterials and concrete. Comput Part Mech 2:139–160

    Article  Google Scholar 

  20. Rojek J, Oñate E, Zarate F, Miquel J (2001) Modelling of rock, soil and granular materials using spherical elements. In: 2nd European conference on computational mechanics ECCM-2001, Cracow, 26–29 June 2001

  21. Shmauder S, Wulf J, Fischmeister HF (1993) Finite element modelling of crack propagation in ductile fracture. Comput Mater Sci 1:297–301

    Article  Google Scholar 

  22. Williams J, O’Connor R (1999) Discrete element simulation and contact problem. Arch Comput Methods Eng 6(4):279–304

    Article  MathSciNet  Google Scholar 

  23. Zárate F, Oñate E (2015) A simple FEM-DEM technique for fracture prediction in materials and structures. Comput Part Mech 2(3):301–314

    Article  Google Scholar 

  24. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Mech Eng 101:207–224

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ICEBREAKER Proof of concept project of the European Research Council. Results presented in this work have been obtained using the FEM2DEM and DEMPACK codes of CIMNE (http://www.cimne.com/dempack) where the DEM–FEM methodology described has been implemented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zárate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zárate, F., Cornejo, A. & Oñate, E. A three-dimensional FEM–DEM technique for predicting the evolution of fracture in geomaterials and concrete. Comp. Part. Mech. 5, 411–420 (2018). https://doi.org/10.1007/s40571-017-0178-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-017-0178-z

Keywords

Navigation