Skip to main content
Log in

A four-node C\(^{0}\) tetrahedral element based on the node-based smoothing technique for the modified couple stress theory

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a four-node \(C^{0}\) tetrahedral element for the modified couple stress theory is proposed. Since the governing equations are the fourth-order differential equations, the first-order derivative of displacement or rotation should be approximated by a continuous function. In the proposed element, nodal rotations are defined using the node-based smoothing technique. Continuous rotation fields are defined with the shape functions and nodal rotations. Both the displacement field and the rotation field are expressed solely in terms of the displacement degrees of freedom. The element stiffness matrix is calculated using the newly defined rotation field. To prevent the increase of calculation cost due to increase of the bandwidth of the stiffness matrix, the preconditioned conjugate gradient method is introduced. The performance of the proposed element is evaluated through various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279–1299. https://doi.org/10.1016/0020-7225(92)90141-3

    Article  MATH  Google Scholar 

  2. Amanatidou E, Aravas N (2002) Mixed finite element formulations of strain-gradient elasticity problems. Comput Methods Appl Mech Eng 191(15–16):1723–1751. https://doi.org/10.1016/S0045-7825(01)00353-X

    Article  MATH  Google Scholar 

  3. Askes H, Gutiérrez MA (2006) Implicit gradient elasticity. Int J Numer Methods Eng 67(3):400–416. https://doi.org/10.1002/nme.1640

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko T, Lasry D (1988) A fractal patch test. Int J Numer Methods Eng 26(10):2199–2210. https://doi.org/10.1002/nme.1620261005

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen JS, Yoon S, Wu CT (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(2):435–466. https://doi.org/10.1002/nme.338

    Article  MATH  Google Scholar 

  6. Choi JH, Lee BC (2018) A 3-node C 0 triangular element for the modified couple stress theory based on the smoothed finite element method. Int J Numer Methods Eng 114(12):1245–1261. https://doi.org/10.1002/nme.5784

    Article  MathSciNet  Google Scholar 

  7. Choi JH, Lee BC (2018) Development of a 4-node hybrid stress tetrahedral element using a node-based smoothed finite element method. Int J Numer Methods Eng 113(11):1711–1728. https://doi.org/10.1002/nme.5717

    Article  MathSciNet  Google Scholar 

  8. Choi JH, Lee BC (2018) Rotation-free triangular shell element using node-based smoothed finite element method. Int J Numer Methods Eng 116(6):359–379. https://doi.org/10.1002/nme.5928

    Article  MathSciNet  Google Scholar 

  9. Cook RD (2007) Concepts and applications of finite element analysis, 4th edn. Wiley, Hoboken

    Google Scholar 

  10. Cosserat E, Cosserat F (1909) Théorie des corps déformables. Herrman

  11. Eringen AC (1983) On differential equations of non local elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710. https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  12. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci 2(2):189–203. https://doi.org/10.1016/0020-7225(64)90004-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng H, Cui X, Li G (2016) A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Eng Anal Bound Elem 62:78–92. https://doi.org/10.1016/j.enganabound.2015.10.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng H, Cui X, Li G (2017) A stable nodal integration method for static and quasi-static electromagnetic field computation. J Comput Phys 336:580–594. https://doi.org/10.1016/j.jcp.2017.02.022

    Article  MathSciNet  MATH  Google Scholar 

  15. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857

    Article  MathSciNet  Google Scholar 

  16. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487. https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  17. Garg N, Han CS (2013) A penalty finite element approach for couple stress elasticity. Comput Mech 52(3):709–720. https://doi.org/10.1007/s00466-013-0842-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Garg N, Han CS (2015) Axisymmetric couple stress elasticity and its finite element formulation with penalty terms. Arch Appl Mech 85(5):587–600. https://doi.org/10.1007/s00419-014-0932-0

    Article  MATH  Google Scholar 

  19. He ZC, Li GY, Zhong ZH, Cheng AG, Zhang GY, Liu GR, Li E, Zhou Z (2013) An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech 52(1):221–236. https://doi.org/10.1007/s00466-012-0809-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Imatani S, Hatada K, Maugin GA (2005) Finite element analysis of crack problems for strain gradient material model. Philos Mag 85(33–35):4245–4256. https://doi.org/10.1080/14786430500363544

    Article  Google Scholar 

  21. Koiter WT (1964) Couples-stress in the theory of elasticity. Proc K Ned Akad Wet 67:17–44

    MATH  Google Scholar 

  22. Kwon YR, Lee BC (2017) A mixed element based on Lagrange multiplier method for modified couple stress theory. Comput Mech 59(1):117–128. https://doi.org/10.1007/s00466-016-1338-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Kwon YR, Lee BC (2018) Three dimensional elements with Lagrange multipliers for the modified couple stress theory. Comput Mech 62(1):97–110. https://doi.org/10.1007/s00466-017-1487-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  25. Li E, He ZC, Xu X, Liu GR (2015) Hybrid smoothed finite element method for acoustic problems. Comput Methods Appl Mech Eng 283:664–688. https://doi.org/10.1016/j.cma.2014.09.021

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu GR, Zhang GY (2009) A novel scheme of strain-constructed point interpolation method for static and dynamic mechanics problems. Int J Appl Mech 1(1):233–258. https://doi.org/10.1142/S1758825109000083

    Article  Google Scholar 

  27. Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Comput Methods 2(4):645–665. https://doi.org/10.1002/nme.2050

    Article  MATH  Google Scholar 

  28. Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877. https://doi.org/10.1007/s00466-006-0075-4

    Article  MATH  Google Scholar 

  29. Liu GR, Nguyen-Thoi T, Lam KY (2009a) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4–5):1100–1130. https://doi.org/10.1016/j.jsv.2008.08.027

    Article  Google Scholar 

  30. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009b) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87(1–2):14–26. https://doi.org/10.1016/j.compstruc.2008.09.003

    Article  Google Scholar 

  31. Liu GR, Nguyen-Xuan H, Nguyen-Thoi T, Xu X (2009c) A novel Galerkin-like weakform and a superconvergent alpha finite element method (S\(\alpha \)FEM) for mechanics problems using triangular meshes. J Comput Phys 228(11):4055–4087. https://doi.org/10.1016/j.jcp.2009.02.017

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu GR, Xu X, Zhang GY, Gu YT (2009d) An extended Galerkin weak form and a point interpolation method with continuous strain field and superconvergence using triangular mesh. Comput Mech 43(5):651–673. https://doi.org/10.1007/s00466-008-0336-5

    Article  MathSciNet  Google Scholar 

  33. Ma X, Chen W (2013) Refined 18-DOF triangular hybrid stress element for couple stress theory. Finite Elem Anal Des 75:8–18. https://doi.org/10.1016/j.finel.2013.06.006

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma X, Chen W (2014) 24-DOF quadrilateral hybrid stress element for couple stress theory. Comput Mech 53(1):159–172. https://doi.org/10.1007/s00466-013-0899-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Mcfarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060–1067. https://doi.org/10.1088/0960-1317/15/5/024

    Article  Google Scholar 

  36. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  Google Scholar 

  37. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124. https://doi.org/10.1016/0020-7683(68)90036-X

    Article  MATH  Google Scholar 

  38. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448. https://doi.org/10.1007/BF00253946

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78(3):324–353. https://doi.org/10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  40. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  Google Scholar 

  41. Papanicolopulos SA, Zervos A, Vardoulakis I (2009) A three-dimensional C1 finite element for gradient elasticity. Int J Numer Methods Eng 77(10):1396–1415. https://doi.org/10.1002/nme

    Article  MATH  Google Scholar 

  42. Park SK, Gao XL (2008) Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z Angew Math Phys 59(5):904–917. https://doi.org/10.1007/s00033-006-6073-8

    Article  MathSciNet  MATH  Google Scholar 

  43. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559–564

    Article  Google Scholar 

  44. Providas E, Kattis MA (2002) Finite element method in plane Cosserat elasticity. Comput Struct 80(27–30):2059–2069. https://doi.org/10.1016/S0045-7949(02)00262-6

    Article  Google Scholar 

  45. Shu JY, King WE (1999) Finite Elements for Materials With Strain Gradient Effects. Int J Numer Methods Eng 44(January 1999):373–391. https://doi.org/10.1002/(SICI)1097-0207(19990130)44:33.0.CO;2-7

    Article  MATH  Google Scholar 

  46. Soh AK, Wanji C (2004) Finite element formulations of strain gradient theory for microstructures and the C0–1 patch test. Int J Numer Methods Eng 61(3):433–454. https://doi.org/10.1002/nme.1075

    Article  MATH  Google Scholar 

  47. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41(10):2855–2865. https://doi.org/10.1016/0956-7151(93)90100-7

    Article  Google Scholar 

  48. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115. https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  49. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414. https://doi.org/10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  50. Watkins DS (2004) Fundamentals of matrix computations, 3rd edn. Wiley, Hoboken. https://doi.org/10.2307/2153000

    Book  MATH  Google Scholar 

  51. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  52. Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Methods Eng 73(4):564–595. https://doi.org/10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  53. Zervos A, Papanicolopulos SA, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech 135(3):203–213. https://doi.org/10.1061/(asce)0733-9399(2009)135:3(203)

    Article  MATH  Google Scholar 

  54. Zhang G, Lu H, Yu D, Bao Z, Wang H (2018) A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids. Eng Anal Bound Elem 87:165–172. https://doi.org/10.1016/j.enganabound.2017.12.002

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang ZQ, Liu GR, Khoo BC (2012) Immersed smoothed finite element method for two dimensional fluid–structure interaction problems. Int J Numer Methods Eng 90(10):1292–1320. https://doi.org/10.1002/nme.4299

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhao J, Chen W, Ji B (2010) A weak continuity condition of FEM for axisymmetric couple stress theory and an 18-DOF triangular axisymmetric element. Finite Elem Anal Des 46(8):632–644. https://doi.org/10.1016/j.finel.2010.03.003

    Article  MathSciNet  Google Scholar 

  57. Zhao J, Chen WJ, Lo SH (2011) A refined nonconforming quadrilateral element for couple stress/strain gradient elasticity. Int J Numer Methods Eng 85(3):269–288. https://doi.org/10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  58. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, Amsterdam. https://doi.org/10.1016/c2009-0-24909-9

    Book  MATH  Google Scholar 

  59. Zybell L, Mühlich U, Kuna M, Zhang ZL (2012) A three-dimensional finite element for gradient elasticity based on a mixed-type formulation. Comput Mater Sci 52(1):268–273. https://doi.org/10.1016/j.commatsci.2011.02.026

    Article  Google Scholar 

Download references

Acknowledgements

GDS and JHC were supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1C1C1003724) and Creative Materials Discovery Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT (No .NRF-2019M3D1A1079229). GDS also acknowledges support by the KAI-NEET, KAIST, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JH., Sim, GD. & Lee, BC. A four-node C\(^{0}\) tetrahedral element based on the node-based smoothing technique for the modified couple stress theory. Comput Mech 65, 1493–1508 (2020). https://doi.org/10.1007/s00466-020-01831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01831-3

Keywords

Navigation