Skip to main content
Log in

An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new mixed explicit implicit time stepping scheme for solving the linear advection equation on a Cartesian cut cell mesh. We use a standard second-order explicit scheme on Cartesian cells away from the embedded boundary. On cut cells, we use an implicit scheme for stability. This approach overcomes the small cell problem—that standard schemes are not stable on the arbitrarily small cut cells—while keeping the cost fairly low. We examine several approaches for coupling the schemes in one dimension. For one of them, which we refer to as flux bounding, we can show a TVD result for using a first-order implicit scheme. We also describe a mixed scheme using a second-order implicit scheme and combine both mixed schemes by an FCT approach to retain monotonicity. In the second part of this paper, extensions of the second-order mixed scheme to two and three dimensions are discussed and the corresponding numerical results are presented. These indicate that this mixed scheme is second-order accurate in \(L^1\) and between first- and second-order accurate along the embedded boundary in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aftosmis, M.J., Berger, M.J., Melton, J.E.: Robust and efficient Cartesian mesh generation for component-based geometry. AIAA J. 36, 952–960 (1998)

    Article  Google Scholar 

  2. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142, 1–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almgren, A.S., Bell, J.B., Colella, P., Marthaler, T.: A Cartesian grid projection method for the incompressible Euler equations in complex geometries. SIAM J. Sci. Comput 18, 1289–1309 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almgren, A.S., Bell, J.B., Szymczak, W.G.: A numerical method for the incompressible Navier–Stokes equations based on an approximate projection. SIAM J. Sci. Comput. 17, 358–369 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, T.: A 3-D least-squares upwind Euler solver for unstructured meshes. In: Napolitano, M., Sabetta, F. (eds.) Thirteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 414, pp. 240–244. Springer (1993)

  6. Bayyuk, S.A., Powell, K.G., van Leer, B.: A simulation technique for 2-D unsteady inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry. AIAA Paper 93-2991-CP (1993)

  7. Bell, J.B., Almgren, A., Beckner, V., Day, M., Lijewski, M., Nonaka, A., Zhang, W.: BoxLib User’s Guide. Tech. rep., CCSE, Lawrence Berkeley National Laboratory (2012). https://ccse.lbl.gov/BoxLib/BoxLibUsersGuide.pdf

  8. Bell, J.B., Colella, P., Glaz, H.M.: A second order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bell, J.B., Colella, P., Howell, L.H.: An efficient second-order projection method for viscous incompressible flow. In: Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, pp. 360–367 (1991)

  10. Berger, M.J.: A note on the stability of cut cells and cell merging. Appl. Numer. Math 96, 180–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berger, M.J., Helzel, C., LeVeque, R.: H-Box method for the approximation of hyperbolic conservation laws on irregular grids. Tech. rep., Courant Mathematics and Computing Laboratory, New York University (2002). Technical Report 02-001

  12. Berger, M.J., LeVeque, R.: A rotated difference scheme for Cartesian grids in complex geometries. AIAA Paper CP-91-1602 (1991)

  13. Boris, J.P., Book, D.L.: Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  MATH  Google Scholar 

  14. http://people.nas.nasa.gov/~aftosmis/cart3d/

  15. Chern, I.L., Colella, P.: A conservative front tracking method for hyperbolic conservation laws. Tech. rep., Lawrence Livermore National Laboratory, Livermore, CA (1987). Preprint UCRL-97200

  16. Colella, P.: A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6, 104–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colella, P., Graves, D.T., Keen, B.J., Modiano, D.: A Cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys. 211, 347–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Collins, J., Colella, P., Glaz, H.: An implicit-explicit Eulerian Godunov scheme for compressible flow. J. Comput. Phys. 116, 195–211 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diba, V., Meister, A., Ortleb, S., Birken, P.: Efficient time integration of IMEX type using exponential integrators for compressible, viscous flow simulation. In: Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Mathematisches Forschungsinstitut Oberwolfach (MFO) (2015). Report No. 41/2015

  21. Gill, P.E., Murray, W., Wright, M.H.: Numerical Linear Algebra and Optimization, vol. 1. Addison-Wesley Publishing Company, Boston (1991)

    MATH  Google Scholar 

  22. Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary values problems. Math. Comp. 29, 396–406 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helzel, C., Berger, M.J., LeVeque, R.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26, 785–809 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jebens, S., Knoth, O., Weiner, R.: Partially implicit peer methods for the compressible Euler equations. J. Comput. Phys. 230, 4955–4974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s methods. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  28. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  29. May, S.: Embedded boundary methods for flow in complex geometries. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University (2013)

  30. May, S., Berger, M.J.: Two-dimensional slope limiters for finite volume schemes on non-coordinate-aligned meshes. SIAM J. Sci. Comput. 35, A2163–A2187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mikula, K., Ohlberger, M., Urbán, J.: Inflow-implicit/outflow-explicit finite volume methods for solving advection equations. Appl. Numer. Math 85, 16–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morton, K.: On the analysis of finite volume methods for evolutionary problems. SIAM J. Numer. Anal. 35, 2195–2222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pember, R., Bell, J.B., Colella, P., Crutchfield, W., Welcome, M.L.: An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 278–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quirk, J.J.: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids 23, 125–142 (1994)

    Article  MATH  Google Scholar 

  35. Saltzman, J.: An unsplit 3d upwind method for hyperbolic conservation laws. J. Comput. Phys. 115, 153–168 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Spijker, M.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42, 271–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  38. Wendroff, B., White, A.B.: A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl. 18, 761–767 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zalesak, S.T.: Fully multidimsional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ann Almgren, John Bell, and Andy Nonaka from Lawrence Berkeley National Laboratory for providing and helping the authors with the software packages BoxLib and VarDen, as well as for helpful discussions. This work was supported in part by the DOE office of Advanced Scientific Computing under Grant DE-FG02-88ER25053 and by AFOSR Grant FA9550-13-1-0052 as well as by ERC STG. N 306279, SPARCCLE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra May.

Proof of Theorem 1

Proof of Theorem 1

(Restatement of Theorem 1) The scheme (6) is TVD for the linear advection equation (1) for \(0 \le \lambda \le 1\), if the exact solution has compact support.

Proof

We cannot directly apply Harten’s theorem [23, 37] to show that the scheme is TVD, but we imitate its proof in order to show

$$\begin{aligned} \sum _{i} |s_{i+1}^{n+1} - s_i^{n+1} | \le \sum _{i} |s_{i+1}^n - s_i^n |. \end{aligned}$$
(13)

We split the sum on the left hand side in the following way

$$\begin{aligned} \sum _{i} |s_{i+1}^{n+1} - s_i^{n+1} |= & {} \sum _{i\le -3} |s_{i+1}^{n+1} - s_i^{n+1} | + \sum _{i\ge 2} |s_{i+1}^{n+1} - s_i^{n+1} | \nonumber \\&+\, |s_{-1}^{n+1}-s_{-2}^{n+1} | + |s_{0}^{n+1}-s_{-1}^{n+1} | + |s_{1}^{n+1}-s_{0}^{n+1} | + |s_{2}^{n+1}-s_{1}^{n+1} |.\nonumber \\ \end{aligned}$$
(14)

We estimate the sums \(\sum _{i\le -3} |s_{i+1}^{n+1} - s_i^{n+1} |\) and \(\sum _{i\ge 2} |s_{i+1}^{n+1} - s_i^{n+1} |\) in the first line (whose behavior is dominated by the explicit scheme) and the four terms in the second line (whose behavior is dominated by the implicit scheme) separately.

Terms involving the explicit scheme The MUSCL scheme can be written as

$$\begin{aligned} s_i^{n+1} = s_i^n - C_{i-1/2}^n \left( s_i^n - s_{i-1}^n\right) \end{aligned}$$

with

$$\begin{aligned} C_{i-1/2}^n = \lambda \frac{s_i^n + (1-\lambda ) s_{x,i}^n \frac{\Delta x}{2} - s_{i-1}^n - (1-\lambda ) s_{x,i-1}^n \frac{\Delta x}{2}}{s_i^n - s_{i-1}^n}, \end{aligned}$$

which satisfy \(0 \le C_{i-1/2}^n \le 1\) for the chosen limiter. This relation holds on all cells with indices \(i \le -2\) or \(i \ge 2\) (with \(s_{x,-2}^n = s_{x,1}^n = 0\)). This implies for \(i \le -3\) and \(i \ge 2\) the relation

$$\begin{aligned} |s_{i+1}^{n+1} - s_i^{n+1} | \le (1-C_{i+1/2}^n) |s_{i+1}^n - s_i^n | + C_{i-1/2}^n |s_i^n - s_{i-1}^n |. \end{aligned}$$

Taking the compact support into account, there holds

$$\begin{aligned} \sum _{i\le -3} |s_{i+1}^{n+1} - s_i^{n+1} | \le \sum _{i\le -3} |s_{i+1}^n - s_i^n | - C_{-5/2}^n |s_{-2}^n - s_{-3}^n | \end{aligned}$$
(15)

and

$$\begin{aligned} \sum _{i\ge 2} |s_{i+1}^{n+1} - s_i^{n+1} | \le \sum _{i\ge 2} |s_{i+1}^n - s_i^n | + C_{3/2}^n |s_{2}^n - s_{1}^n |. \end{aligned}$$
(16)

Terms involving the implicit scheme To estimate the remaining four terms in the second line of Eq. (14) in terms of data at time \(t^{n}\) we exploit the convexity of the implicit scheme. We write the updates for \(s_{-1}^{n+1}\) and \(s_{0}^{n+1}\) as

$$\begin{aligned} s_{-1}^{n+1} = \lambda _{-1} s_{-1}^n + (1-\lambda _{-1}) s_{-2}^n \quad \text {and} \quad s_0^{n+1} = \lambda _{0} s_{0}^n + (1-\lambda _{0}) s_{-1}^{n+1} \end{aligned}$$

with \(\lambda _{-1} = 1/(1+\lambda )\) and \(\lambda _0 = 1/(1+\lambda /\alpha )\), \(\lambda _{-1}, \lambda _{0} \in (0,1]\). Then we have the following estimates: for the difference \(|s_2^{n+1} - s_1^{n+1} |\), we get

$$\begin{aligned} |s_2^{n+1} - s_1^{n+1} |&= |(1-C_{3/2}^n)s_2^n + C_{3/2}^n s_1^n - (1-\lambda ) s_1^n - \lambda s_0^{n+1} | \\&\le (1-C_{3/2}^n) |s_2^n - s_1^n | + \lambda |s_1^n - s_0^{n+1} |. \end{aligned}$$

For the difference \(|s_1^{n+1} - s_0^{n+1} |\), there holds

$$\begin{aligned} |s_1^{n+1} - s_0^{n+1} | = |(1-\lambda ) s_1^n + \lambda s_0^{n+1} - s_0^{n+1} | = (1-\lambda ) |s_1^n - s_0^{n+1} | \end{aligned}$$

with

$$\begin{aligned} |s_1^n - s_0^{n+1} | = |s_1^n - \lambda _0 s_0^n - (1-\lambda _0) s_{-1}^{n+1} | \le |s_1^n - s_0^n | + (1-\lambda _0) |s_0^n - s_{-1}^{n+1} |. \end{aligned}$$

For the difference \(|s_0^{n+1} - s_{-1}^{n+1} |\), we get

$$\begin{aligned} |s_0^{n+1} - s_{-1}^{n+1} | = |\lambda _0 s_0^n + (1-\lambda _0) s_{-1}^{n+1} - s_{-1}^{n+1} | = \lambda _0 |s_0^n - s_{-1}^{n+1} |. \end{aligned}$$

This implies

$$\begin{aligned}&|s_2^{n+1} - s_1^{n+1} | + |s_1^{n+1} - s_0^{n+1} | + |s_0^{n+1} - s_{-1}^{n+1} | \\&\qquad \qquad \le (1-C_{3/2}^n) |s_2^n - s_1^n | + |s_1^n - s_0^{n+1} | + \lambda _0 |s_0^n - s_{-1}^{n+1} |\\&\qquad \qquad \le (1-C_{3/2}^n) |s_2^n - s_1^n | + |s_1^n - s_0^n | + |s_0^n - s_{-1}^{n+1} |. \end{aligned}$$

Finally, there holds

$$\begin{aligned} |s_0^n - s_{-1}^{n+1} | = |s_0^n - \lambda _{-1} s_{-1}^n - (1-\lambda _{-1}) s_{-2}^n | \le |s_0^n - s_{-1}^n | + (1-\lambda _{-1}) |s_{-1}^n - s_{-2}^n | \end{aligned}$$

as well as

$$\begin{aligned} |s_{-1}^{n+1} - s_{-2}^{n+1} |&= |\lambda _{-1} s_{-1}^n + (1-\lambda _{-1}) s_{-2}^n - (1-C_{-5/2}^n) s_{-2}^n - C_{-5/2}^n s_{-3}^n |\\&\le \lambda _{-1} |s_{-1}^n - s_{-2}^n | + C_{-5/2}^n |s_{-2}^n-s_{-3}^n |. \end{aligned}$$

To summarize, we get

$$\begin{aligned}&|s_2^{n+1} - s_1^{n+1} | + |s_1^{n+1} - s_0^{n+1} | + |s_0^{n+1} - s_{-1}^{n+1} | + |s_{-1}^{n+1} - s_{-2}^{n+1} | \\&\quad \le (1-C_{3/2}^n) |s_2^n - s_1^n | + |s_1^n - s_0^n | + |s_0^n - s_{-1}^n | + |s_{-1}^n - s_{-2}^n | + C_{-5/2}^n |s_{-2}^n-s_{-3}^n |. \end{aligned}$$

Therefore, we have estimated all terms in (14). Putting the results in Eqs. (15) and (16) as well as our results for the implicit terms together implies the claim (13).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, S., Berger, M. An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes. J Sci Comput 71, 919–943 (2017). https://doi.org/10.1007/s10915-016-0326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0326-2

Keywords

Mathematics Subject Classification

Navigation