Skip to main content
Log in

Aspects of finite element formulations for the coupled problem of poroelasticity based on a canonical minimization principle

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work presents a new finite element treatment of the coupled problem of Darcy–Biot-type fluid transport in porous media undergoing large deformations, that is free from any stabilization techniques. The formulation bases on an incremental two-field minimization principle that is constrained by the equation of continuity for the fluid mass content and determines at a given state the deformation and the fluid mass flux vector. The big advantage of the minimization formulation over classical saddle point principles of poroelasticity is the omission of the inf-sup condition—a condition that makes the construction of stable and computationally efficient finite element formulations difficult. Due to the \(H(\hbox {Div}, {\mathcal B}_0)\) variational structure of the minimization principle on the fluid side, lowest order Raviart–Thomas elements are used for the conforming approximation of the fluid mass flux. Furthermore, a standard nodal-based element using bilinear interpolation for both fields combined with a reduced numerical integration of the (volumetric) coupling term is analyzed and used for the solution of the minimization principle. Representative numerical examples demonstrate the performance of the proposed finite element designs of the minimization principle and clearly underline advantages over finite element formulations of the classical two-field saddle point principle formulated in deformation and fluid potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. At that time this element was not called like that and Taylor and Hood [59] published their work four years after Sandhu and Wilson [55].

  2. Note, that since the dissipation potential \(\widehat{\phi }\) defined in (20) is a homogeneous function of degree two, the dissipation potential functional D is half the dissipation in the overall body.

  3. Note, that the solid grains forming the matrix still can be modelled as incompressible by setting Biot’s coefficient to \(b=1\).

  4. The restriction \({\varvec{v}}\in {\varvec{H}}^1_0({\mathcal B})\) is in line with the additive split (48)\(_1\) of the displacement field into an extension \({\varvec{u}}_D \in {\varvec{H}}^1({\mathcal B})\) that fulfills the Dirichlet boundary condition and \({\varvec{u}}_0 \in {\varvec{H}}^1_0({\mathcal B})\) that is zero on the Dirichlet boundary.

  5. A fourth-order tensor is called positive definite if the inequality is satisfied for all second-order tensors \({\varvec{B}}\ne {\varvec{0}}\) at all points \({\varvec{x}}\in {\mathcal B}\). Alternatively, one can define positive definitness in the following way: there exists a constant \(A_0>0\) such that the inequality holds for all second-order tensors \({\varvec{B}}\ne {\varvec{0}}\) at all points \({\varvec{x}}\in {\mathcal B}\). This definition is equivalent to the previous one if as well as \({\varvec{B}}\) are continuous. Note that if has minor symmetries we have to restrict \({\varvec{B}}\) to the set of symmetric second-order tensors \({\varvec{B}}= {\varvec{B}}^T\).

  6. The index \(k \in {\mathcal N}_0\) indicates the polynomial degree of the normal component of the fluid flux on the element edges.

  7. For \({\varvec{H}}^1({\mathcal B}_0)\)-conformity, piecewise polynomial vector functions have to satisfy continuity in every component across element boundaries, i.e. \({\varvec{H}}^1({\mathcal B}_0) \subset H(\hbox {Div}, {\mathcal B}_0)\).

  8. Finite Element Shapes. Associated with a node I of a two-dimensional finite element \({\mathcal B}_{0}^e\), the interpolation matrix has the form

    figure a

    in terms of the shape function \(N^I\) and its derivatives.

  9. Note, that the mixed variables (126) do not arise in the presented reduced integration formulation. Latter is fully governed by the algebraic minimization principle (66) in terms of the potential (80). Hence, the reduced integration approach is not constrained by the discrete inf-sup condition which is algebraic in nature.

  10. We use an Enhanced-Assumed-Strain element with a strain enhancement of the standard \(\hbox {Q}_1\) element with two vectorial parameters \(\underline{{\varvec{\alpha }}}_I^e \in {\mathbb {R}}^2\), \(I=1,2\), per element, see Simo and Armero [56].

  11. Another possibility to overcome locking could be the increase of the polynomial degree of the finite element shape functions (\(\hbox {Q}_1\hbox {--}\hbox {RT}_1\), \(\hbox {Q}_2\hbox {--}\hbox {RT}_1\),...). Due to the higher computational costs this approach is not further investigated.

References

  1. Abousleiman Y, Cheng A, Cui L, Detournay E, Roegiers J-C (1996) Mandel’s problem revisited. Géotechnique 46(2):187–195

    Article  Google Scholar 

  2. Aguilar G, Gaspar FJ, Lisbona F, Rodrigo C (2008) Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int J Numer Method Eng 75(11):1282–1300

    Article  MathSciNet  MATH  Google Scholar 

  3. Armero F (1999) Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput Methods Appl Mech Eng 171(34):205–241

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21:337–344

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold DN, Boffi D, Falk RS (2005) Quadrilateral \({H}(\text{ div })\) finite elements. SIAM J Numer Anal 42(6):2429–2451

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuska I (1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192

    Article  MathSciNet  MATH  Google Scholar 

  7. Bear J (1972) Dynamics of fluids in porous media. Dover Publications, New York

    MATH  Google Scholar 

  8. Berger L, Bordas R, Kay D, Tavener S (2017) A stabilized finite element method for finite-strain three-field poroelasticity. Comput Mech 60:51–68

    Article  MathSciNet  MATH  Google Scholar 

  9. Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Book  Google Scholar 

  10. Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  11. Biot M (1972) Theory of finite deformations of porous solids. Indiana Univ Math J 21:597–620

    Article  MATH  Google Scholar 

  12. Böger L, Nateghi A, Miehe C (2017) A minimization principle for deformation-diffusion processes in polymeric hydrogels: constitutive modeling and FE implementation. Int J Solids Struct 121:257–274

    Article  Google Scholar 

  13. Booker J, Small J (1975) An investigation of the stability of numerical solutions of Biot’s equations of consolidation. Int J Solids Struct 11:907–917

    Article  MATH  Google Scholar 

  14. Borja R, Alarcon E (1995) A mathematical framework for finite strain elastoplastic consolidation. Part I: balance laws, variational formulation, and linearization. Comput Methods Appl Mech Eng 122:145–171

    Article  MATH  Google Scholar 

  15. Bouklas N, Landis CM, Huang R (2015) A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J Mech Phys Solids 79:21–43

    Article  MathSciNet  MATH  Google Scholar 

  16. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse Numérique 8:129–151

    Article  Google Scholar 

  17. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Brezzi F, Douglas J, Marini L (1985) Two families of mixed finite elements for second order elliptic problems. Numer Math 47:217–235

    Article  MathSciNet  MATH  Google Scholar 

  19. Carter JP, Booker JR, Small JC (1979) The analysis of finite elasto-plastic consolidation. Int J Numer Anal Methods Geomech 3(2):107–129

    Article  MATH  Google Scholar 

  20. Carter J, Small J, Booker J (1977) A theory of finite elastic consolidation. Int J Solids Struct 13:467–478

    Article  MATH  Google Scholar 

  21. Chapelle D, Bathe KJ (1993) The inf-sup test. Comput Struct 47:537–545

    Article  MathSciNet  MATH  Google Scholar 

  22. Choo J, Borja RI (2015) Stabilized mixed finite elements for deformable porous media with double porosity. Comput Methods Appl Mech Eng 293:131–154

    Article  MathSciNet  MATH  Google Scholar 

  23. Christian J (1977) Numerical methods in geotechnical engineering, chapter two- and three-dimensional consolidation, pp 399–426. McGraw-Hill, New York

  24. Coussy O (1995) Mechanics of porous continua. Wiley, Chichester

    MATH  Google Scholar 

  25. Coussy O (2004) Poromechanics. Wiley, Chichester

    MATH  Google Scholar 

  26. Cryer CW (1963) A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Quart J Mech Appl Math 16:401–412

    Article  MATH  Google Scholar 

  27. de Boer R (2000) Theory of porous media. Springer, Berlin

    Book  MATH  Google Scholar 

  28. Detournay E, Cheng AH-D (1993) Fundamentals of poroelasticity. In Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, Vol. II, Analysis and Design Method, chapter 5, pp 113–171. Pergamon Press, Oxford

  29. Dortdivanlioglu B, Krischok A, Beirao da Veiga L, Linder C (2018) Mixed isogeometric analysis of strongly coupled diffusion in porous materials. Int J Numer Methods Eng 114:28–46

    Article  MathSciNet  Google Scholar 

  30. Douglas J, Wang J (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comput 52(186):495–508

    Article  MathSciNet  MATH  Google Scholar 

  31. Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86

    Chapter  Google Scholar 

  32. Ferronato M, Gambolati G, Teatini P (2001) Ill-conditioning of finite element poroelasticity equations. Int J Solid Struct 38(34–35):5995–6014

    Article  MATH  Google Scholar 

  33. Ferronato M, Castelletto N, Gambolati G (2010) A fully coupled 3-D mixed finite element model of Biot consolidation. J Comput Phys 229:4813–4830

    Article  MATH  Google Scholar 

  34. Gresho PM, Lee RL (1981) Don’t suppress the wiggles–they’re telling you something. Comput Fluids 9:223–253

    Article  MathSciNet  MATH  Google Scholar 

  35. Haga JB, Osnes H, Langtangen HP (2012) On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int J Numer Anal Methods Geomech 36(12):1507–1522

    Article  Google Scholar 

  36. Hughes TJR, Franca LP (1987) A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity pressure spaces. Comput Methods Appl Mech Eng 65:85–96

    Article  MathSciNet  MATH  Google Scholar 

  37. Korsawe J, Starke G (2006) A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J Numer Anal 43(1):318–339

    Article  MathSciNet  MATH  Google Scholar 

  38. Krischok A, Linder C (2016) On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. Int J Numer Methods Eng 106:278–297

    Article  MathSciNet  MATH  Google Scholar 

  39. Lewis R, Schrefler B (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New York

    MATH  Google Scholar 

  40. Linder C, Krischok A, Dortdivanlioglu B (2017) Stable computational methods for strongly coupled porous media. In 88th GAMM anual meeting

  41. Mandel J (1953) Consolidation des sols. Géotechnique, 7

  42. Miehe C, Mauthe S, Teichtmeister S (2015) Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture. J Mech Phys Solids 82:186–217

    Article  MathSciNet  Google Scholar 

  43. Mira P, Pastor M, Li T, Liu X (2003) A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems. Comput Methods Appl Mech Eng 192:4257–4277

    Article  MATH  Google Scholar 

  44. Pantuso D, Bathe KJ (1997) On the stability of mixed finite elements in large strain analysis of incompressible solids. Finite Elem Anal Des 28:83–104

    Article  MathSciNet  MATH  Google Scholar 

  45. Papastavrou A, Steinmann P, Stein E (1997) Enhanced finite element formulation for geometrically linear fluid saturated porous media. Mech Cohes-Frict Mater 2:185–203

    Article  Google Scholar 

  46. Phillips PJ, Wheeler M (2007) A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput Geosci 11:131–144

    Article  MathSciNet  MATH  Google Scholar 

  47. Phillips PJ, Wheeler M (2007) A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case. Comput Geosci 11:131

  48. Phillips PJ, Wheeler M (2008) A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput Geosci 12:417–435

    Article  MathSciNet  MATH  Google Scholar 

  49. Phoon KK, Toh KC, Chan SH, Lee FH (2002) An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations. Int J Numer Methods Eng 55(4):377–400

    Article  MATH  Google Scholar 

  50. Preisig M, Prévost JH (2011) Stabilization procedure in coupled poromechanics problems: a critical assessment. Int J Numer Anal Methods Geomech 35:1207–1225

    Article  Google Scholar 

  51. Prévost JH (1980) Mechanics of continuous porous media. Int J Eng Sci 18(6):787–800

    Article  MATH  Google Scholar 

  52. Prévost JH (1983) Implicit-explicit schemes for nonlinear consolidation. Comput Methods Appl Mech Eng 39(2):225–239

    Article  MATH  Google Scholar 

  53. Raviart PA, Thomas JM (1977) Primal hybrid finite element methods for 2nd order elliptic equations. Math Comput 31(138):391–413

    MATH  Google Scholar 

  54. Rodrigo C, Gaspar FJ, Hu X, Zikatanov LT (2016) Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput Methods Appl Mech Eng 298:183–204

    Article  MathSciNet  MATH  Google Scholar 

  55. Sandhu R, Wilson E (1969) Finite-element analysis of seepage in elastic media. J Eng Mech Div 95:641–652

    Google Scholar 

  56. Simo J, Armero F (1992) Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449

    Article  MathSciNet  MATH  Google Scholar 

  57. Simo J, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  58. Sun W, Ostien J, Salinger A (2013) A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain. Int J Numer Anal Methods Geomech 37:2755–2788

    Article  Google Scholar 

  59. Taylor C, Hood P (1973) A numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1(1):73–100

    Article  MathSciNet  MATH  Google Scholar 

  60. Tchonkova M, Peters J, Sture S (2008) A new mixed finite element method for poro-elasticity. Int J Numer Anal Methods Geomech 32:579–606

    Article  MATH  Google Scholar 

  61. Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke

  62. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  63. Toh K-C, Phoon K-K (2008) Comparison between iterative solution of symmetric and non-symmetric forms of Biot’s FEM equations using the generalized Jacobi preconditioner. Int J Numer Anal Methods Geomech 32(9):1131–1146

    Article  MATH  Google Scholar 

  64. Truty A, Zimmermann T (2006) Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Comput Methods Appl Mech Eng 195:1517–1546

    Article  MathSciNet  MATH  Google Scholar 

  65. Verfürth R (1984) Error estimates for a mixed finite element approximation of the Stokes equations. Rairo Anal Numér 18:175–182

    Article  MathSciNet  MATH  Google Scholar 

  66. Vermeer PA, Verruijt A (1981) An accuracy condition for consolidation by finite elements. Int J Numer Anal Methods Geomech 5:1–14

    Article  MathSciNet  MATH  Google Scholar 

  67. White JA, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197(49):4353–4366

    Article  MATH  Google Scholar 

  68. Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201–209

    Article  MATH  Google Scholar 

  69. Zhou XX, Chow YK, Leung CF (2007) Hybrid and enhanced finite element methods for problems of soil consolidation. Int J Numer Methods Eng 69:221–249

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Steffen Mauthe and Stephan Teichtmeister thank their late advisor Prof. Christian Miehe for his guidance, intensive mentorship and unlimited support. The anonymous reviewers’ detailed comments and suggestions are highly acknowledged. Moreover, we thank the German Research Foundation (DFG) for funding this work within SFB 1313, Research Project B.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mauthe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teichtmeister, S., Mauthe, S. & Miehe, C. Aspects of finite element formulations for the coupled problem of poroelasticity based on a canonical minimization principle. Comput Mech 64, 685–716 (2019). https://doi.org/10.1007/s00466-019-01677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01677-4

Keywords

Navigation