Skip to main content
Log in

Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner–Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\( \varvec{{\bar{t}}} \) :

External traction vector

\( \varvec{{\bar{u}}} \) :

Prescribed displacement

\( \varvec{{\hat{n}}} \) :

Unit outward normal

\( \varvec{b} \) :

Body force vector

\( \varvec{m}_j, n_j \) :

Outward unit normal vectors in contour integral

\( \varvec{u} \) :

Displacement field vector

\( \varvec{v} \) :

Test function

\( \delta \) :

Kronecker delta

\( \epsilon _b, \epsilon _s \) :

Bending and shear strains

\( \epsilon _{ij} \) :

Strain tensor

\( \Gamma \) :

Inner J-integral boundary

\( \kappa \) :

Material constant

\( \mu \) :

Shear modulus

\( \mu _d \) :

Inhomogeneities shear modulus

\( \mu _m \) :

Main problem shear modulus

\( \nu _d \) :

Inhomogeneities Poisson’s ratio

\( \Omega \) :

Problem domain

\( \omega _j\) :

Cloud of node j

\( \partial \Omega \) :

Problem boundary

\( \partial \Omega _c \) :

Crack surface

\( \partial \Omega _t \) :

Surface traction boundary

\( \partial \Omega _u \) :

Displacement boundary

\( \phi _i \) :

Angle of micro-defect i and main crack-tip connection line with respect to the x-axis

\( \psi \) :

Section rotation of the plate middle plane

\( \sigma \) :

Cauchy stress tensor

\( \sigma _{ij} \) :

Stress tensor

\( \theta _i \) :

Micro-defect i direction angle

\( \varepsilon \) :

Linear strain tensor

\( a_{mc} \) :

Main crack length

\( C_+, C_- \) :

Upper and lower crack surfaces

\( C_0 \) :

Outer J-integral boundary

\( d_i \) :

Distance of the micro-defect i to the main crack-tip

detJ :

Determinant of the Jacobian

\( h_{elem} \) :

Square root of the crack-tip element area

I :

Interaction integral

J :

J-integral

\( l_{md} \) :

Characteristic length of the micro-defect

M :

Bending moment

\( N_{gp} \) :

Number of Gauss points

Q :

Shear load

q :

Weighting function

\( q_j \) :

A set of linearly independent functions defined at each nodal cloud

\( r_m \) :

Interaction integral scalar multiplier

W :

Strain energy density

w :

Transverse displacement of the plate

\( w_{gp} \) :

Weight of each Gauss point

\(\varvec{b}_{ji}\) :

Nodal parameters associated with G/XFEM

\(\varvec{D}\) :

Hook’s tensor

\({\mathbb {R}}^{2}\) :

Bi-dimensional domain

\({\mathcal {N}}_j\) :

FE Shape function

\(\nu \) :

Poisson ratio

\(\Omega _{G}\) :

Global domain

\(\Omega _{L}\) :

Local domain

\(\phi _{ji}\) :

G/XFEM shape function

\(\theta \) :

Angle between x coordinate and direction of the crack front

\({\tilde{\varvec{u}}}(\varvec{x})\) :

G/XFEM displacement approximation

E :

Young’s modulus

\(K_I, K_{II}, K_{III} \) :

Mode-I, II and III stress intensity factors

\(L_{ji}\) :

Local approximation function

References

  1. Akbari A, Kerfriden P, Rabczuk T, Bordas SP (2012) An adaptive multiscale method for fracture based on concurrent-hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the association for computational mechanics in engineering, Manchester

  2. Alves PD, Barros FB, Pitangueira RLS (2013) An object oriented approach to the generalized finite element method. Adv Eng Softw 59:1–18. https://doi.org/10.1016/j.advengsoft.2013.02.001

    Article  Google Scholar 

  3. Barcellos CS, Mendonca PTR, Duarte CA (2009) A Ck continuous generalized finite element formulation applied to laminated kirchhoff plate model. Comput Mech 44:377–393. https://doi.org/10.1007/s00466-009-0376-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazǎnt ZP (1976) Instability, ductility, and size effects in strain-softening concrete. J Eng Mech 102(2):331–344

    Google Scholar 

  5. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S

    Article  MATH  Google Scholar 

  6. Bhardwaj G, Singh S, Singh I, Mishra B, Rabczuk T (2016) Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA. Theor Appl Fract Mech 85:294–319. https://doi.org/10.1016/j.tafmec.2016.04.004

    Article  Google Scholar 

  7. Budarapu PR, Gracie R, Bordas SP, Rabczuk T (2014) An adaptive multiscale method for quasi-static crack growth. Comput Mech 53(6):1129–1148. https://doi.org/10.1007/s00466-013-0952-6

    Article  MATH  Google Scholar 

  8. Budarapu PR, Gracie R, Yang SW, Zhuang X, Rabczuk T (2014b) Efficient coarse graining in multiscale modeling of fracture. Theor Appl Fract Mech 69:126–143. https://doi.org/10.1016/j.tafmec.2013.12.004

    Article  Google Scholar 

  9. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938. https://doi.org/10.1016/0020-7683(95)00255-3

    Article  MATH  Google Scholar 

  10. Chan SK, Tuba IS, Wilson WK (1970) On the finite element method in linear fracture mechanics. Eng Fract Mech 30:227–231. https://doi.org/10.1016/0013-7944(70)90026-3

    Google Scholar 

  11. Charalambides RP, Meeking Mc (1987) Finite element method simulation of crack propagation in a brittle microcracking solids. Mech Mater 6:71–87. https://doi.org/10.1016/0167-6636(87)90023-8

    Article  Google Scholar 

  12. Chudnovsky AKMA, Dolgopolsky A (1987) Elastic interaction of a crack with a microcrack array-ii. Elastic solution for two crack configurations (piecewise constant and linear approximations). Int J Solids Struct 23(2):11–21. https://doi.org/10.1016/0020-7683(87)90029

    Article  MATH  Google Scholar 

  13. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, New York

    Google Scholar 

  14. de Borst R, Sluys LJ, Muhlhaus HB, Pamin J (1993) Fundamental issues in finite element analyses of localisation of deformation. Eng Comput 10(2):99–121. https://doi.org/10.1108/eb023897

    Article  Google Scholar 

  15. Dolbow J, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39:2557–2574. https://doi.org/10.1016/S0020-7683(02)00114-2

    Article  MATH  Google Scholar 

  16. Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in mindlin-reissner plates with the extended finite element method. Int J Solids Struct 37:7161–7183. https://doi.org/10.1016/S0020-7683(00)00194-3

    Article  MATH  Google Scholar 

  17. Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. Technical report, ECCOMAS thematic conference on meshless methods, technical report 06

  18. Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197:487–504. https://doi.org/10.1016/j.cma.2007.08.017

    Article  MathSciNet  MATH  Google Scholar 

  19. Duarte CA, Oden JT (1995) Hp clouds - a meshless method to solve boundary-value problem. Tech. rep., TICAM, The University of Texas at Austin, technical Report

  20. Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232. https://doi.org/10.1016/S0045-7949(99)00211-4

    Article  MathSciNet  Google Scholar 

  21. Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte CA (eds) Advances in meshfree techniques, pp 1–26. https://doi.org/10.1007/978-1-4020-6095-3-1

  22. Holl M, Loehnert S, Wriggers P (2013) An adaptive multiscale method for crack propagation and crack coalescence. Int J Numer Meth Eng 93:23–51. https://doi.org/10.1002/nme.4373

    Article  MathSciNet  MATH  Google Scholar 

  23. Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3d multiscale crack propagation using the xfem applied to a gas turbine blade. Comput Mech 53:173–188. https://doi.org/10.1007/s00466-013-0900-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu KX, Chandra A, Huang Y (1993) Multiple void-crack interaction. Int J Solids Struct 30(11):1473–1489. https://doi.org/10.1016/0020-7683(93)90072-F

    Article  MATH  Google Scholar 

  25. Ingraffea AR, Saouma V (1985) Numerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete. Martinus Nijhoff Publishers, Dordrecht, pp 171–225

    Google Scholar 

  26. Joseph P, Erdogan F (1991) Bending of a thin reissner plate with a through crack. J Appl Mech 58(3):842–846. https://doi.org/10.1115/1.2897273

    Article  Google Scholar 

  27. Kim D, Duarte C, Pereira J (2008) Analysis of interacting cracks using the generalized finite element method with global-local enrichment functions. J Appl Mech 75(5):051107. https://doi.org/10.1115/1.2936240

    Article  Google Scholar 

  28. Kim DJ, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshes. Int J Numer Meth Eng 81:335–365. https://doi.org/10.1002/nme.2690

    MATH  Google Scholar 

  29. Lasry J, Pommier J, Renard Y, Salaun M (2010) eXtended finite element methods for thin cracked plates with kirchhoff-love theory. Int J Numer Meth Eng 84:1115–1138. https://doi.org/10.1002/nme.2939

    Article  MathSciNet  MATH  Google Scholar 

  30. Loehnert S, Belytschko T (2007a) Crack shielding and amplification due to multiple microcracks interacting with a macrocrack. Int J Fract 145:1–8. https://doi.org/10.1007/s10704-007-9094-1

    Article  MATH  Google Scholar 

  31. Loehnert S, Belytschko T (2007b) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Geomech 71:1466–1482. https://doi.org/10.1002/nme.2001

    Article  MathSciNet  MATH  Google Scholar 

  32. Malekan M, Barros FB (2016) Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics. Comput Mech 58(5):819–831. https://doi.org/10.1007/s00466-016-1318-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Malekan M, Barros FB, Pitangueira RLS, Alves PD (2016) An object-oriented class organization for global-local generalized finite element method. Latin Am J Solids Struct 13(13):2529–2551. https://doi.org/10.1590/1679-78252832

    Article  Google Scholar 

  34. Malekan M, Barros FB, Pitangueira RLS, Alves PD, Penna SS (2017) A computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditions. Eng Comput 34(3):988–1019. https://doi.org/10.1108/EC-02-2016-0050

    Article  Google Scholar 

  35. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39:289–314. https://doi.org/10.1016/S0045-7825(96)01087-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Mendonca PTR, Barcellos CS, Torres DAF (2011) Analysis of anisotropic mindlin plate model by continuous and non-continuous GFEM. Finite Elem Anal Des 47:698–717. https://doi.org/10.1016/j.finel.2011.02.002

    Article  MathSciNet  Google Scholar 

  37. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J

    Article  MATH  Google Scholar 

  38. Nguyen VP (2005) An object oriented approach to the xfem with applications to fracture mechanics. Master’s thesis, EMMC-Hochiminh University of Technology

  39. Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2:333–346. https://doi.org/10.1016/0168-874X(86)90020-X

    Article  Google Scholar 

  40. Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153:117–126. https://doi.org/10.1016/S0045-7825(97)00039-X

    Article  MathSciNet  MATH  Google Scholar 

  41. O’Hara P, Duarte C, Eason T (2016) A two-scale GFEM for interaction and coalescence of multiple crack surfaces. Eng Fract Mech 163:274–302. https://doi.org/10.1016/j.engfracmech.2016.06.009

    Article  Google Scholar 

  42. Rice J (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans ASME J Appl Mech 35:379–386. https://doi.org/10.1115/1.3601206

    Article  Google Scholar 

  43. Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938. https://doi.org/10.1016/0013-7944(77)90013-3

    Article  Google Scholar 

  44. Singh I, Mishra B, Bhattacharya S (2011) XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int J Mech Mater Des 7:199–218. https://doi.org/10.1007/s10999-011-9159-1

    Article  Google Scholar 

  45. Soh A, Yang C (2004) Numerical modeling of interactions between a macro-crack and a cluster of micro-defects. Eng Fract Mech 71:193–217. https://doi.org/10.1016/S0013-7944(03)00097-3

    Article  Google Scholar 

  46. Sosa HA, Eischen JW (1986) Computation of stress intensity factors for plate bending via a path-independent integral. Eng Fract Mech 25(4):451–462. https://doi.org/10.1016/0013-7944(86)90259-6

    Article  Google Scholar 

  47. Strouboulis T, Copps K, Babuška I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47:1401–1417. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8%3c1401::AID-NME835%3e3.0.CO;2-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193. https://doi.org/10.1016/S0045-7825(01)00188-8

    Article  MathSciNet  MATH  Google Scholar 

  49. Swenson DV, Ingraffea AR (1988) Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications. Comput Mech 3(5):381–397. https://doi.org/10.1007/BF00301139

    Article  MATH  Google Scholar 

  50. Szabo B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  51. Tada H, Paris PC, Irwin CR (2000) The stress analysis of cracks handbook, 3rd edn. ASME Press, New York. https://doi.org/10.1115/1.801535

    Book  Google Scholar 

  52. Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:104–1071. https://doi.org/10.1007/s00466-013-0948-2

    Article  MathSciNet  MATH  Google Scholar 

  53. Talebi H, Silani M, Rabczuk T (2015) Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv Eng Softw 80:82–90. https://doi.org/10.1016/j.advengsoft.2014.09.016

    Article  Google Scholar 

  54. Watwood V (1969) The finite element method for prediction of crack behaviour. Nucl Eng Des 11:323–332. https://doi.org/10.1016/0029-5493(70)90155-X

    Article  Google Scholar 

  55. Yang SW, Budarapu PR, Mahapatra D, Bordas SP, Zi G, Rabczuk T (2015) A meshless adaptive multiscale method for fracture. Comput Mater Sci 96:382–395. https://doi.org/10.1016/j.commatsci.2014.08.054

    Article  Google Scholar 

  56. Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Trans ASME J Appl Mech 47:335–341. https://doi.org/10.1115/1.3153665

    Article  MATH  Google Scholar 

  57. Zeng Q, Liu Z, Xu D, Wang H, Zhuang Z (2016) Modeling arbitrary crack propagation in coupled shell/solid structures with x-fem. Int J Numer Meth Eng 106:1018–1040. https://doi.org/10.1002/nme.5157

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author (CNPq Scholarship, Brazil—Grant No. 151003/2017-3) and the other author gratefully acknowledge the important support of the Brazilian research agencies CNPq (National Council for Scientific and Technological Developments—Grant No. 308932/2016-1), CAPES (Coordination for the Improvement of Higher Education Personnel), and FAPEMIG (Foundation for Research Support of the State of Minas Gerais—Grant No. APQ-02460-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Malekan.

Appendix A: Intensity factors for Reissner–Mindlin plate problem

Appendix A: Intensity factors for Reissner–Mindlin plate problem

The J-integral contour for a Reissner–Mindlin plate problem is defined as [16]:

$$\begin{aligned} J = \oint _{\Gamma }^{} \left\{ W \delta _{1\beta } - \left[ M_{\alpha \beta } \psi _{\alpha ,1} + Q_{\beta } w_{,1} \right] \right\} n_{\beta } d\Gamma \end{aligned}$$
(A.1)
Table 6 Auxiliary states for the displacement fields of Reissner–Mindlin plate

where \( M_{\alpha \beta } \) is the bending moment, \( Q_{\beta } \) is the shear, w is the transverse displacement and \( \psi _{\alpha } \) is section rotation about the \( x_{\alpha } \) axes that define the middle plane of the plate, in which \( \alpha \text { and } \beta \) ranging over the values 1,2.

Referring to Fig. 4a and following similar mathematical to the Sect. 4, one can reach following interaction energy integral equation for the Reissner–Mindlin plate, and for a crack with traction free faces as:

$$\begin{aligned} I= & {} \oint _{C}^{} \left\{ -W \delta _{1\beta } + \left[ M_{\alpha \beta }^{(1)} \psi _{\alpha ,1}^{(2)} + M_{\alpha \beta }^{(2)} \psi _{\alpha ,1}^{(1)} \right. \right. \nonumber \\&\quad \left. \left. +\,Q_{\beta }^{(1)} w_{,1}^{(2)} + Q_{\beta }^{(2)} w_{,1}^{(1)} \right] \right\} m_{\beta } \, q \, dC \end{aligned}$$
(A.2)

in which, similar to the Sect. 4, State (1) represents the current state and State (2) is an auxiliary state. The interaction strain energy, W, is defined by:

$$\begin{aligned} W^{(1, 2)}= & {} M^{(1)} : \epsilon _b^{(2)} + Q^{(1)} \cdot \epsilon _s^{(2)}\nonumber \\= & {} M^{(2)} : \epsilon _b^{(1)} + Q^{(2)} \cdot \epsilon _s^{(1)} \end{aligned}$$
(A.3)

where \( \epsilon _b \) and \( \epsilon _s \) are bending and shear strains, respectively. Applying the divergence theorem to the integral over A, we obtain:

$$\begin{aligned} I= & {} \int _{A}^{} \left\{ \left[ M_{\alpha \beta }^{(1)} \psi _{\alpha ,1}^{(2)} + M_{\alpha \beta }^{(2)} \psi _{\alpha ,1}^{(1)} + Q_{\beta }^{(1)} w_{,1}^{(2)} + Q_{\beta }^{(2)} w_{,1}^{(1)} \right] \right. \nonumber \\&\quad \left. - W \delta _{1\beta } \right\} q_{\beta } \, dA \end{aligned}$$
(A.4)

The above integral can be reduced depending on whether the quantity of interest is \( K_I \), \( K_{II} \), or \( K_{III} \), as certain terms in the auxiliary fields vanish for each case. For example, for \( K_I \) and \( K_{II} \) the integral takes the form:

$$\begin{aligned} I = \int _{A}^{} \left\{ \left[ Q_{\beta }^{(1)} w_{,1}^{(2)} + Q_{\beta }^{(2)} w_{,1}^{(1)} \right] - W \delta _{1\beta } \right\} q_{\beta } \, dA \end{aligned}$$
(A.5)

whereas for \( K_{III} \) the integral is:

$$\begin{aligned} I = \int _{A}^{} \left\{ \left[ M_{\alpha \beta }^{(1)} \psi _{\alpha ,1}^{(2)} + M_{\alpha \beta }^{(2)} \psi _{\alpha ,1}^{(1)} \right] - W \delta _{1\beta } \right\} q_{\beta } \, dA \end{aligned}$$
(A.6)

The auxiliary state for the displacement fields in Reissner–Mindlin plate theory can be found in Sosa [46] as a power series in \( \sqrt{r} \) and are shown in the following Table 6, in which \( C_{\theta } \) and \( S_{\theta } \) represent \( \cos \theta \) and \( \sin \theta \) functions, respectively. Moreover, the auxiliary bending moments and shear are as follows:

$$\begin{aligned} M_{11}= & {} \frac{K_1}{\sqrt{2r}} \cos \frac{\theta }{2} \left( 1 - \sin \frac{\theta }{2} \sin \frac{3\theta }{2} \right) \nonumber \\&-\,\frac{K_2}{\sqrt{2r}} \sin \frac{\theta }{2} \left( 2 + \cos \frac{\theta }{2} \cos \frac{3\theta }{2} \right) \end{aligned}$$
(A.7)
$$\begin{aligned} M_{22}= & {} \frac{K_1}{\sqrt{2r}} \cos \frac{\theta }{2} \left( 1 - \sin \frac{\theta }{2} \sin \frac{3\theta }{2} \right) \nonumber \\&-\,\frac{K_2}{\sqrt{2r}} \sin \frac{\theta }{2} \cos \frac{\theta }{2} \cos \frac{3\theta }{2} \end{aligned}$$
(A.8)
$$\begin{aligned} M_{12}= & {} \frac{K_1}{\sqrt{2r}} \sin \frac{\theta }{2} \cos \frac{\theta }{2} \cos \frac{3\theta }{2}\nonumber \\&+\,\frac{K_2}{\sqrt{2r}} \cos \frac{\theta }{2} \left( 1 - \sin \frac{\theta }{2} \sin \frac{3\theta }{2} \right) \end{aligned}$$
(A.9)
$$\begin{aligned} Q_1= & {} -\frac{K_3}{\sqrt{2r}} \sin \frac{\theta }{2} \end{aligned}$$
(A.10)
$$\begin{aligned} Q_2= & {} \frac{K_3}{\sqrt{2r}} \cos \frac{\theta }{2} \end{aligned}$$
(A.11)

As an example, \( K_2 \) and \( K_3 \) must be set equal to zero in all equation in order to calculate auxiliary moment intensity factor of mode-I. The process of evaluating the mixed-mode intensity factors must be carried out with a judicious choice of the auxiliary moment and shear force intensity factors to evaluating the interaction energy integral. From the Eq. (A.1) and the energy release rate formulation, one can obtain the following expression:

$$\begin{aligned} I = \frac{24 \pi }{E t^3} \left[ K_I K_I^{(2)} + K_{II} K_{II}^{(2)} \right] + \frac{12 \pi }{10 \mu t} K_{III} K_{III}^{(2)} \end{aligned}$$
(A.12)

where, to extract \( K_I \), the following values is chosen \(K_i^{(2)} = 1 , K_{II}^{(2)} = 0\), and \( K_{III}^{(2)} = 0 \). Then, the moment intensity factor \( K_I \) can be calculated as:

$$\begin{aligned} K_I = \frac{E t^3}{24 \pi } I \end{aligned}$$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekan, M., Barros, F.B. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method. Comput Mech 62, 783–801 (2018). https://doi.org/10.1007/s00466-017-1527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1527-8

Keywords

Navigation