Skip to main content
Log in

A Ck continuous generalized finite element formulation applied to laminated Kirchhoff plate model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A generalized finite element method based on a partition of unity (POU) with smooth approximation functions is investigated in this paper for modeling laminated plates under Kirchhoff hypothesis. The shape functions are built from the product of a Shepard POU and enrichment functions. The Shepard functions have a smoothness degree directly related to the weight functions adopted for their evaluation. The weight functions at a point are built as products of C edge functions of the distance of such a point to each of the cloud boundaries. Different edge functions are investigated to generate C k functions. The POU together with polynomial global enrichment functions build the approximation subspace. The formulation implemented in this paper is aimed at the general case of laminated plates composed of anisotropic layers. A detailed convergence analysis is presented and the integrability of these functions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amarantuga K, Williams JR, Quan S, Weis J (1994) Wavelet-Galerkin solutions for one-dimensional partial differential equations. Int J Numer Methods Eng 37: 2703–2716

    Article  Google Scholar 

  2. Atluri SN, Zhu T (1998) New meshless local Petrov-Galerkin (MPLG) approach in computational mechanics. Comput Mech 22: 117–127

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuška I, Melenk JM (1995) The partition of unity method. Technical Note BN-1185, Institute for Physical Science and Technology, University of Maryland

  4. Babuška I, Melenk JM (1996) The particion of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314

    Article  MATH  Google Scholar 

  5. Barros FB, Proença SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Meth Eng 60: 2373–2398

    Article  MATH  Google Scholar 

  6. Barros FB, de Barcellos CS, Duarte CA (2007) p-Adaptive C k generalized finite element method for arbitrary polygonal clouds. Comput Mech 41: 175–187

    Article  MATH  Google Scholar 

  7. Beirãoda Veiga L, Niiranen J, Eternberg R (2007) A family of C 0 finite element for Kirchhoff plates I: error analysis. SIAM J Numer Anal 45: 2047–2071

    Article  MathSciNet  Google Scholar 

  8. Belinha J, Dinis L (2006) Elasto-plastic analysis of plates by the element free Galerkin Method. Eng Comput 23: 525–551

    Article  Google Scholar 

  9. Belinha J, Dinis L (2006) Analysis of plates and laminates using the element free Galerkin method. Comput Struct 84: 1547–1559

    Article  Google Scholar 

  10. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  MATH  MathSciNet  Google Scholar 

  11. Belytschko T, Liu W, Singer M (1998) On adaptivity and error criteria for mesh free methods. In: Ladéveze P, Oden JT (eds) Adv Adaptive Comput Methods Mech 217–228

  12. Belytschko T, Lu YY, Gu J (1993) Crack propagation by element free Galerkin methods. In: Advanced computational methods for material modeling, AMD vol 180/PVP vol 268. ASME, New York, pp 191–205

  13. Bucciarelli LL, Dworsky N (1980) Sophie Germain. An essay in the history of the theory of elasticity. Reidel, Dordrecht

    MATH  Google Scholar 

  14. De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25: 329–345

    Article  MATH  MathSciNet  Google Scholar 

  15. Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int J Solids Struct 37: 7161–7183

    Article  MATH  Google Scholar 

  16. Donning BM, Liu WK (1998) Meshless methdos for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152: 47–71

    Article  MATH  Google Scholar 

  17. Duarte CA, Babuška I, Oden JT (2000) Generalized finite element method for three-dimensional structural mechanics problems. Comput Struct 77: 215–232

    Article  Google Scholar 

  18. Duarte CA, Kim DJ, Quaresma DM (2006) Arbitrarily smooth generalized element approximations. Comput Methods Appl Mech Eng 196: 33–56

    Article  MATH  MathSciNet  Google Scholar 

  19. Duarte CA, Hamzeh ON, Liska TJ, Tworzyllo WW (2001) A generalized finite element method for the simulation of three- dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190: 2227–2262

    Article  MATH  Google Scholar 

  20. Duarte CA, Oden JT (1995) hp Clouds—A meshless method to solve boundary value problems. TICAM report 95-05, University of Texas

  21. Duarte CA, Oden JT (1996) hp Clouds—an hp meshless method. Numer Methods Partial Diff Equ 12: 673–705

    Article  MATH  MathSciNet  Google Scholar 

  22. Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. TICAM report 96-07, University of Texas

  23. Dunavant DA (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 1129–1148

    Article  MATH  MathSciNet  Google Scholar 

  24. Edwards HC (1996) C finite element basis functions. Technical Report, TICAM report 96-45. The University of Texas at Austin

  25. Edwards HC (1997) A parallel infrastructure for scalable adaptive finite element methods and its application hp least squares C colocation. PhD dissertation, The University of Texas at Austin, Austin, TX, USA

  26. Garcia O, Fancello EA, de Barcellos CS, Duarte CA (2000) hp-Clouds in Mindlin’s thick plate model. Int J Numer Methods Eng 47: 1381–1400

    Article  MATH  Google Scholar 

  27. Gingold RA, Monaghan JJ (1982) Kernel estimates as a basis for general particle methods in hydrodynamics. J Comput Phys 46: 429–453

    Article  MATH  MathSciNet  Google Scholar 

  28. Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic pdes. SIAM J Sci Comput 22: 853–890

    Article  MATH  MathSciNet  Google Scholar 

  29. Kirchhoff GR (1850) Uber das Gleichgewicht und die Bewegung Einer Elastichen Scheibe. J Reine Angew Math 40: 51–88

    MATH  Google Scholar 

  30. Krysl P, Belytschko T (1996) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17: 26–35

    Article  MathSciNet  Google Scholar 

  31. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33: 3057–3080

    Article  MATH  Google Scholar 

  32. Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  33. Lu H, Li S, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing Kernel Element Method. Part III: Generalized enrichment and applications. Comput Methods Appl Mech Eng 193: 989–1011

    Article  MATH  Google Scholar 

  34. Melenk JM (1995) On generalized finite element methods. PhD Thesis, University of Maryland, College Park.

  35. Moës N, Dolbow J, Belytschko T (1999) Elastic crack growth in finite elements without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  36. Nicolazzi LC, Duarte CA, Fancello EA, de Barcellos CS (1997) hp-Clouds—a meshless method in boundary elements. Part II: implementation. Int J Boundary Element Methods Commun 8: 83–85

    Google Scholar 

  37. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318

    Article  MATH  Google Scholar 

  38. Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126

    Article  MATH  MathSciNet  Google Scholar 

  39. Reddy JN (1997) Mechanics of laminated composite plates and shells, 2nd edn. CRC Press, USA

    Google Scholar 

  40. Rvachev VL, Sheiko TI (1995) R-functions in boundary value problems in mechanics. Appl Mech Rev 48(4): 151–188

    Article  Google Scholar 

  41. Shapiro V (1991) Theory of R-functions and applications: a primer. Technical report TR91-1219, Computer Science Department, Cornell University, Ithaca, NY

  42. Shepard D (1968) A two-dimensional function for irregularly spaced data. In: ACM National Conference, pp 517–524

  43. Simkins DC Jr, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: Globally compatible C n(n ≧ 1) triangular hierarchy. Comput Methods Appl Mech Eng 193: 1013–1034

    Article  MATH  MathSciNet  Google Scholar 

  44. Stoker JJ (1942) Mathematical problems connected with the plate bending and buckling of elastic plates. Bull Am Math Soc 48: 247–261

    Article  MATH  MathSciNet  Google Scholar 

  45. Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193

    Article  MATH  MathSciNet  Google Scholar 

  46. Sukumar N, Moran B, Belytschko T (1998) The natural element method. Int J Numer Methods Eng 43: 839–887

    Article  MATH  MathSciNet  Google Scholar 

  47. Whitney JM (1987) Structural analysis of laminated anisotropic plates. Technomic Publications Inc, Lancaster

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clovis Sperb de Barcellos or Paulo de Tarso R. Mendonça.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Barcellos, C.S., de Tarso R. Mendonça, P. & Duarte, C.A. A Ck continuous generalized finite element formulation applied to laminated Kirchhoff plate model. Comput Mech 44, 377–393 (2009). https://doi.org/10.1007/s00466-009-0376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0376-5

Keywords

Navigation