Skip to main content
Log in

Integration of PGD-virtual charts into an engineering design process

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This article deals with the efficient construction of approximations of fields and quantities of interest used in geometric optimisation of complex shapes that can be encountered in engineering structures. The strategy, which is developed herein, is based on the construction of virtual charts that allow, once computed offline, to optimise the structure for a negligible online CPU cost. These virtual charts can be used as a powerful numerical decision support tool during the design of industrial structures. They are built using the proper generalized decomposition (PGD) that offers a very convenient framework to solve parametrised problems. In this paper, particular attention has been paid to the integration of the procedure into a genuine engineering design process. In particular, a dedicated methodology is proposed to interface the PGD approach with commercial software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng 102(5):991–1017

    Article  MathSciNet  Google Scholar 

  2. Alfaro I, González D, Bordeu F, Leygue A, Ammar A, Cueto E, Chinesta F (2014) Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices. J Comput Surg 1(1):1

    Article  Google Scholar 

  3. Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involving geometry: a step towards efficient shape optimization. Comput Methods Appl Mech Eng 268:178–193

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121

    Article  MATH  Google Scholar 

  5. Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. Comptes Rendus de Mécanique 343(4):247–263

    Article  Google Scholar 

  6. Barrault MYM, Nguyen N, Patera A (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l’Académie des Sciences Paris 339:667–672

    MathSciNet  MATH  Google Scholar 

  7. Bernoulli C (1836) Vademecum des Mechanikers. J. G. Cotta, Stuttgart und Tübingen

    MATH  Google Scholar 

  8. Bognet B, Leygue A, Chinesta F, Bordeu F (2012) Parametric shape and material simulations for optimized parts design. In: ASME 2012 11th biennial conference on engineering systems design and analysis, American Society of Mechanical Engineers, pp 217–218

  9. Chinesta F, Keunings R, Leygue A (2014) The Proper generalized decomposition for advanced numerical simulations: a Primer., SpringerBriefs in Applied Sciences and TechnologySpringer, Cham

    Book  MATH  Google Scholar 

  10. Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404

    Article  Google Scholar 

  11. Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59

    Article  MathSciNet  Google Scholar 

  12. Cremonesi M, Néron D, Guidault PA, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292

    Article  MathSciNet  MATH  Google Scholar 

  13. De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  MathSciNet  MATH  Google Scholar 

  14. González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283(1):210–223

    Article  Google Scholar 

  15. Gunzburger M, Peterson J, Shadid J (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047

    Article  MathSciNet  MATH  Google Scholar 

  16. Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, New York

    MATH  Google Scholar 

  17. Ladevèze P (2013) The Virtual chart concept in computational structural mechanics (plenary lecture). In: COMPLAS XII, 3–5 Sept 2013, Barcelona (Spain)

  18. Ladevèze P (2014) PGD in linear and nonlinear Computational Solid Mechanics. In: Separated Representations and PGD-Based Model Reduction, Springer, pp 91–152

  19. Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742

    Article  MATH  Google Scholar 

  20. Maday Y, Ronquist E (2004) The reduced-basis element method: application to a thermal fin problem. J Sci Comput 26(1):240–258

    MathSciNet  MATH  Google Scholar 

  21. Manzoni A, Quarteroni A, Rozza G (2012) Model reduction techniques for fast blood flow simulation in parametrized geometries. Int J Numer Methods Biomed Eng 28(6–7):604–625

    Article  MathSciNet  Google Scholar 

  22. Néron D, Ben Dhia H, Cottereau R (2015) A decoupled strategy to solve reduced-order multimodel problems in the PGD and Arlequin frameworks. Comput Mech. doi:10.1007/s00466-015-1236-0

  23. Néron D, Boucard PA, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292

  24. Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804

  25. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372

    Article  MathSciNet  MATH  Google Scholar 

  26. Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23):1603–1626

    Article  MathSciNet  MATH  Google Scholar 

  27. Patera AT, Rozza G (2006) Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0. Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. http://augustine.mit.edu

  28. Raghavan B, Breitkopf P, Tourbier Y, Villon P (2013) Towards a space reduction approach for efficient structural shape optimization. Struct Multidiscip Optim 48(5):987–1000

    Article  Google Scholar 

  29. Relun N, Néron D, Boucard PA (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92

    Article  MathSciNet  MATH  Google Scholar 

  30. Rozza G, Veroy K (2007) On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput Methods Appl Mech Eng 196(7):1244–1260

    Article  MathSciNet  MATH  Google Scholar 

  31. Ryckelynck DFC, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128

    Article  MathSciNet  MATH  Google Scholar 

  32. Zlotnik S, Díez P, Modesto D, Huerta A (2015) Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. Int J Numer Methods Eng 103(10):737–758

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was carried out in collaboration with Alain Bergerot from AIRBUS Defence & Space. We would like to thank SAMTECH (SIEMENS Company) for their help and availability so as to interface the method developed with SAMCEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Néron.

Appendices

Appendix 1

The Proper Generalized Decomposition is illustrated through a linear elastic problem where the constitutive law is parametrised by a set of Young’s moduli \(\varvec{\alpha }=\left( \alpha _1,\ldots ,\alpha _m\right) \in \varvec{\mathcal {A}}={\mathcal {A}}_1\times \cdots \times {\mathcal {A}}_m\). The problem is defined by the following governing equations and conditions:

  • Equilibrium equations

    $$\begin{aligned} {\left\{ \begin{array}{ll} \varvec{\nabla } \cdot \varvec{\sigma }=\varvec{0} &{}\quad \text { in }\quad {\varOmega } \times \varvec{\mathcal {A}}\\ \varvec{\sigma } \cdot \varvec{n} = \varvec{f} &{} \quad \text { on } \quad \partial _d {\varOmega } \times \varvec{\mathcal {A}} \end{array}\right. } \end{aligned}$$
    (44)
  • Constitutive law

    $$\begin{aligned} \varvec{\sigma }= & {} \mathbb {C}\left( \varvec{\alpha }\right) \varvec{\varepsilon } \quad \text { in } \quad {\varOmega } \times \varvec{\mathcal {A}} \end{aligned}$$
    (45)
    $$\begin{aligned}= & {} \mathbb {C}\left( \varvec{\alpha }\right) \varvec{\nabla }_s \left( \varvec{u}\right) \quad \text { in } \quad {\varOmega } \times \varvec{\mathcal {A}} \end{aligned}$$
    (46)

    where \(\varvec{\nabla }_s\) stands for the symmetrical part of \(\varvec{\nabla }\) and \(\mathbb {C}\) is the Hooke’s operator.

  • Homogeneous boundary condition

    $$\begin{aligned} \varvec{u}=\varvec{0} \quad \text { on } \quad \partial _u {\varOmega } \times \varvec{\mathcal {A}} \end{aligned}$$
    (47)

One writes the full variational formulation of the problem, i.e. the problem is not only integrated on space but also on parameters. For that purpose, we introduce the following functional spaces \(\mathcal {V}=H_0^1\left( {\varOmega }\right) =\left\{ \varvec{v} \in H^1\left( {\varOmega }\right) \left| \varvec{v}_{\left| \partial _u{\varOmega }\right. }=\varvec{0} \right. \right\} \), \(\varvec{\mathcal {I}}=L^2\left( \varvec{\mathcal {A}}\right) \) and \(\mathcal {I}_j=L^2\left( {\mathcal {A}}_j\right) \) for \(j=1,\ldots ,m\). The problem therefore writes:

Find \(\varvec{u} \in \varvec{\mathcal {I}}\otimes \mathcal {V}\) such that

$$\begin{aligned} \forall \,\varvec{v} \in \varvec{\mathcal {I}}\otimes \mathcal {V},\quad \int \limits _{\varvec{\mathcal {A}}\,\,\,}\int \limits _{{\varOmega }}{\varvec{\sigma }\left( \varvec{u}\right) :\varvec{\varepsilon }\left( \varvec{v}\right) } \,\mathrm d {\varOmega }\,\mathrm d \varvec{\mathcal {A}}= \int \limits _{\varvec{\mathcal {A}}\,\,\,}\int \limits _{\partial _d {\varOmega }}{\varvec{f} \cdot \varvec{v}}\,\mathrm d S \,\mathrm d \varvec{\mathcal {A}}\nonumber \\ \end{aligned}$$
(48)

where \(\otimes \) stands for the tensor product.

One seeks a PGD approximation of the displacement.

$$\begin{aligned} \varvec{u}(\varvec{\alpha }, \varvec{X}) \approx \varvec{u}_n ( \varvec{\alpha }, \varvec{X})= \sum _{i=1}^n \lambda _i(\varvec{\alpha })\varvec{\Lambda }_i(\varvec{X})= \sum _{i=1}^n \prod _{j=1}^m\lambda _i^j(\alpha _j)\varvec{\Lambda }_i(\varvec{X})\nonumber \\ \end{aligned}$$
(49)

The different modes are computed through an iterative algorithm. At the enrichment step n, we suppose the separated variables representation \(\varvec{u}_n\) known. The new \((m+1)\)-uplet \(\left( \lambda ^1,\ldots ,\lambda ^m,\varvec{\Lambda }\right) \in \mathcal {I}_{1}\times \cdots \times \mathcal {I}_{m}\times \mathcal {V}\) is then computed at enrichment step \(n+1\):

$$\begin{aligned} \varvec{u}_{n+1}=\varvec{u}_n+\prod _{r=1}^m\lambda ^r\varvec{\Lambda } \end{aligned}$$
(50)

To do so, the following expression of the test function \(\varvec{v}\) is chosen:

$$\begin{aligned} \varvec{v}=\prod _{r=1}^m\lambda ^r\varvec{\Lambda }^*+\sum _{j=1}^m\lambda ^{j*}\prod _{\begin{array}{c} r=1\\ r \ne j \end{array}}^m\lambda ^r\varvec{\Lambda } \end{aligned}$$
(51)

with \(\varvec{\Lambda }^*\in \mathcal {V}\) and \(\lambda ^{j*}=\mathcal {I}_{j}\) for \(j=1,\ldots ,m\). (5) becomes:

Find \(\left( \lambda ^1,\ldots ,\lambda ^m,\varvec{\Lambda }\right) \in \mathcal {I}_{1}\times \cdots \times \mathcal {I}_{m}\times \mathcal {V}\) such that

$$\begin{aligned}&\forall \left( \lambda ^{1*},\ldots ,\lambda ^{m*},\varvec{\Lambda }^*\right) \in \mathcal {I}_{1}\times \cdots \times \mathcal {I}_{m}\times \mathcal {V},\nonumber \\&\int \limits _{\varvec{\mathcal {A}}\,\,\,}\int \limits _{{\varOmega }}\mathbb {C}\left( \varvec{\alpha }\right) \,\varvec{\nabla }_s \left( \varvec{u}_n+\prod _{r=1}^m\lambda ^r\varvec{\Lambda }\right) :\varvec{\nabla }_s \left( \prod _{r=1}^m\lambda ^r\varvec{\Lambda }^*\right. \nonumber \\&\left. +\sum _{j=1}^m\lambda ^{j*}\prod _{\begin{array}{c} r=1 \\ r \ne j \end{array}}^m\lambda ^r\varvec{\Lambda }\right) \,\mathrm d {\varOmega }\,\mathrm d \varvec{\mathcal {A}}\nonumber \\&\quad =\int \limits _{\varvec{\mathcal {A}}\,\,\,}\int \limits _{\partial _d {\varOmega }}{\varvec{f} \cdot \left( \prod _{r=1}^m\lambda ^r\varvec{\Lambda }^*+\sum _{j=1}^m\lambda ^{j*}\prod _{\begin{array}{c} r=1 \\ r \ne j \end{array}}^m\lambda ^r\varvec{\Lambda }\right) }\,\mathrm d S \,\mathrm d \varvec{\mathcal {A}}\nonumber \\ \end{aligned}$$
(52)

The computations of the different integrals are highly facilitated by the separated variables representation of the integrand since they can be done independently from one another. However, the problem is not linear any more with respect to the test function given in (51). The \((m+1)\)-uplet \(\left( \lambda ^1,\ldots ,\lambda ^m,\varvec{\Lambda }\right) \) is consequently computed thanks to a fixed-point algorithm. The parametric and space problems are solved alternatively. In practice, the fixed-point algorithm is stopped before reaching convergence (only 2 or 3 iterations are performed). The space basis \(\left( \varvec{\Lambda }_i\right) \) is, then, conserved and the functions \(\left( \lambda _i^1,\ldots ,\lambda _i^m\right) \) are computed, once again, during the so-called update step [25].

Appendix 2

Fig. 9
figure 9

The test structure is partitioned into three sub-domains, the Young’s modulus of each domain being considered as a parameter

Fig. 10
figure 10

First modes associated to each Young’s modulus. Modes associated to the Young’s modulus \(E_1\) (a), modes associated to the Young’s modulus \(E_2\) (b) and msodes associated to the Young’s modulus \(E_3\) (c) considered as parameters

Let us illustrate the procedure described in Appendix 1 through a simple numerical example. The considered geometry is a \(\Gamma \)-shaped structure (see Fig. 9) which is clamped at one side and subjected to an upward load of 1000 N at the other side. The structure is partitioned into three different sub-domains and the Young’s modulus of each domain, being considered as a parameter, can vary from 50 to 1000 GPa. The Poisson’s ratio is homogeneous and equal to 0.3. A PGD approximation of the generalised displacement field \(\varvec{u}\) is sought:

$$\begin{aligned}&\varvec{u}\left( \varvec{\alpha },\varvec{X}\right) =\varvec{u}\left( E_1,E_2,E_3,\varvec{X}\right) \nonumber \\&=\sum _{i=1}^m \lambda _i^1\left( E_1\right) \lambda _i^2\left( E_2\right) \lambda _i^3\left( E_3\right) \tilde{\varvec{u}}_i\left( \varvec{X}\right) \end{aligned}$$
(53)

which gives after space discretisation:

$$\begin{aligned} \mathbf U\left( E_1,E_2,E_3\right) =\sum _{i=1}^m \lambda _i^1\left( E_1\right) \lambda _i^2\left( E_2\right) \lambda _i^3\left( E_3\right) \tilde{\mathbf U}_i \end{aligned}$$
(54)

The modes, i.e. the functions \(\lambda _i^1\), \(\lambda _i^2\), \(\lambda _i^3\) and \(\tilde{\mathbf U}_i\) are computed thanks to Algorithm 1. The four first modes associated to the Young’s moduli \(E_1\), \(E_2\) and \(E_3\) are plotted in Fig. 10 and the four first spatial modes are represented in Fig. 11.

Fig. 11
figure 11

First spatial modes. a First spatial mode \(\tilde{\mathbf U}_1\), b second spatial mode \(\tilde{\mathbf U}_2\), c third spatial mode \(\tilde{\mathbf U}_3\), d fourth spatial mode \(\tilde{\mathbf U}_4\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courard, A., Néron, D., Ladevèze, P. et al. Integration of PGD-virtual charts into an engineering design process. Comput Mech 57, 637–651 (2016). https://doi.org/10.1007/s00466-015-1246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1246-y

Keywords

Navigation