Skip to main content

Algorithmic Aspects of Isogeometric Shape Optimization

  • Conference paper
  • First Online:
Isogeometric Analysis and Applications 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 107))

  • 1266 Accesses

Abstract

Shape optimization is concerned about finding optimal designs under the aspect of some cost criteria often involving the solution of a partial differential equation (PDE) over the afore said unknown shape. In general, industrial cases involve a geometric model from Computer Aided Design (CAD). However, solving PDEs requires an analysis suitable working model, typically a Finite Element (FEM) triangulation. Hence, some of the geometric properties known from the CAD model may be lost during this format change. Therefore, we employ isogeometric analysis (IGA) instead, which has a tighter connection between geometry, simulation and shape optimization. In this paper, we present a self-contained treatment of gradient based shape optimization method with isogeometric analysis, focusing on algorithmic and practical aspects like computation of shape gradients in an IGA formulation and updating B-spline and NURBS geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Bazilevs, L. Beirão da Veiga, J. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Blanchard, R. Duvigneau, A.V. Vuong, B. Simeon, Shape gradient for isogeometric structural design. J. Optim. Theory Appl. 161(2), 1–7 (2013)

    MathSciNet  MATH  Google Scholar 

  3. P.B. Bornemann, F. Cirak, A subdivision-based implementation of the hierarchical B-spline finite element method. Comput. Methods Appl. Mech. Eng. 253, 584–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. De Boor, A Practical Guide to Splines, vol. 27 (Springer, New York, 2001)

    MATH  Google Scholar 

  5. M.C. Delfour, J.P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Advances in Design and Control, 2nd edn. (SIAM, Philadelphia, 2011)

    Google Scholar 

  6. D. Fußeder, A.V. Vuong, B. Simeon, Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput. Methods Appl. Mech. Eng. 286, 313–331 (2015)

    Article  MathSciNet  Google Scholar 

  7. J. Haslinger, P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design: Theory and Applications (Wiley, Chichester/New York, 1988)

    MATH  Google Scholar 

  8. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 301–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.G. Johnson, The NLOPT nonlinear-optimization package (2014), http://ab-initio.mit.edu/nlopt. [Online; Accessed 10 Oct 2014]

  11. J. Kiendl, R. Schmidt, R. Wüchner, K.U. Bletzinger, Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput. Methods Appl. Mech. Eng. 274, 148–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. MATLAB, Release 2012a (2012), “The MathWorks Inc.”

    Google Scholar 

  13. F. Murat, J. Simon, Etude de problèmes d’optimal design, in Optimization Techniques Modeling and Optimization in the Service of Man Part 2 (Springer, Berlin/Heidelberg, 1976), pp. 54–62

    Book  Google Scholar 

  14. D.M. Nguyen, Isogeometric analysis and shape optimization in electromagnetism. Ph.D. thesis, Technical University of Denmark, Feb 2012

    Google Scholar 

  15. D.M. Nguyen, A. Evgrafov, J. Gravesen, Isogeometric shape optimization for electromagnetic scattering problems. Prog. Electromagn. Res. B 45, 117–146 (2012)

    Article  Google Scholar 

  16. J. Nocedal, S.J. Write, Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  17. L. Piegl, W. Tiller, The NURBS Book (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  18. O. Pironneau, Optimal Shape Design for Elliptic Systems (Springer, New York, 1983)

    MATH  Google Scholar 

  19. B. Protas, T.R. Bewley, G. Hagen, A computational framework for the regularization of adjoint analysis in multiscale PDE systems. J. Comput. Phys. 195, 49–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Qian, Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput. Methods Appl. Mech. Eng. 199, 2059–2071 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981)

    MATH  Google Scholar 

  22. J. Sokolowski, J.P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16 (Springer, Berlin/New York, 1992)

    Google Scholar 

  23. K. Svanberg, A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951)

    MATH  Google Scholar 

  25. A.V. Vuong, Adaptive Hierarchical Isogeometric Finite Element Methods (Springer, Wiesbaden, 2012)

    Book  MATH  Google Scholar 

  26. A. Wächter, L.T. Biegler, On the implementation of a primal-dual Interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. W.A. Wall, M.A. Frenzel, C. Cyron, Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng. 197, 2976–2988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis. Comput. Aided Des. 45(4), 812–821 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Utz Wever from Siemens AG, Corporate Technology, for many helpful discussions on the subject.

This work was supported by the European Union within the Project 284981 “TERRIFIC” (7th Framework Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Fußeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fußeder, D., Simeon, B. (2015). Algorithmic Aspects of Isogeometric Shape Optimization. In: Jüttler, B., Simeon, B. (eds) Isogeometric Analysis and Applications 2014. Lecture Notes in Computational Science and Engineering, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-23315-4_8

Download citation

Publish with us

Policies and ethics