Skip to main content
Log in

Inverse analysis for heterogeneous materials and its application to viscoelastic curing polymers

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution aims at achieving two important goals: First, it outlines a numerical inverse homogenization strategy able to recover material parameters of the microstructure by using results of macroscopic tests. Second, it considers parameter identification for viscoelastic heterogeneous materials, which is a step providing the basis for the further extension toward the general treatment of dissipative processes. The approach proposed couples the Levenberg–Marquardt method with the multiscale finite element method. In this combination, the former is a gradient-based optimization strategy used to minimize a merit function while the latter is a numerical homogenization technique needed to solve the direct problem. The specific example studied in the paper deals with the investigation of a composite consisting of a viscoelastic curing polymer and a nonlinear elastic material. It proposes a three-step procedure for the evaluation of its material parameters and discusses the accuracy and the uniqueness of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bazaraa MS, Sherali H, Shetty CM (2006) Nonlinear programming: theory and algorithms. Wiley, New York

    Book  Google Scholar 

  2. Buchanan J, Gilbert RP (2007a) Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math Comp Model 45:231–308

    Article  MathSciNet  Google Scholar 

  3. Buchanan J, Gilbert RP (2007b) Determination of the parameters of cancellous bone using high frequency acoustic measurements II: inverse problems. J Comput Acoust 15(2):199–220

    Article  MATH  MathSciNet  Google Scholar 

  4. Buchanan J, Gilbert RP, Ou Y (2011) Recovery of the parameters of cancellous bone by inversion of effective velocities, and transmission and reflection coefficients. Inverse Probl 27(12):125,006 (1-23)

    Article  MathSciNet  Google Scholar 

  5. Burczyrński T, Kuś W (2008) Identification of material properties in multiscale modelling. J Phys: Conf Ser 135(1):012,025

    Google Scholar 

  6. Cherkaev E (2001) Inverse homogenization for evaluation effective properties of a mixture. Inverse Probl 17:1203–1218

    Article  MATH  MathSciNet  Google Scholar 

  7. Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly nonlinear structures using generalized continua. Comput Methods Appl Mech Eng 192:3222–3244

    Article  Google Scholar 

  8. Feyel F, Chaboche JL (2000) FE\(^2\) multiscale approach for modelling the elastoviscoplastic behavior of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  9. Fish J, Ghouali A (2001) Multiscale analytical sensitivity analysis for composite materials. Int J Numer Meth Eng 50(6):1501–1520

    Article  MATH  Google Scholar 

  10. Ghouali MA, Duvaut G, Ortola S, Oster A (1998) Local analytical design sensitivity analysis of the forging problem using FEM. Comput Meth Appl Mech Eng 163:55–70

    Article  MATH  Google Scholar 

  11. Haftka R, Gürdal Z, Kamat MP (1992) Elements of structural optimization. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  12. Haftka RT, Grandhi RV (1986) Structural shape optimization—a survey. Comput Meth Appl Mech Eng 57(1):91–106

    Article  MATH  MathSciNet  Google Scholar 

  13. Haug EJ, Arora JS (1978) Design sensitivity analysis of elastic mechanical systems. Comput Meth Appl Mech Eng 15:35–62

    Article  MATH  Google Scholar 

  14. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis in structural systems. Academic Press, New York

    Google Scholar 

  15. Haupt R, Haupt SE (2004) Practical genetic algorithms. Wiley, Hoboken

    MATH  Google Scholar 

  16. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  17. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A 326:131–147

    Article  MATH  Google Scholar 

  18. Hossain M, Possart G, Steinmann P (2009) A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput Mech 44:621–630

    Article  MATH  MathSciNet  Google Scholar 

  19. Hossain M, Possart G, Steinmann P (2010) A finite strain framework for the simulation of polymer curing. Part II. Viscoelasticity and shrinkage. Comput Mech 46:363–375

    Article  MATH  Google Scholar 

  20. Ilic S, Hackl K (2009) Application of the multiscale FEM to the modeling of nonlinear multiphase materials. J Theor Appl Mech 47:537–551

    Google Scholar 

  21. Ilic S, Hackl K, Gilbert R (2010) Application of the multiscale FEM to the modeling of cancellous bone. Biomechan Model Mechanobiol 9(1):87–102

    Article  Google Scholar 

  22. Kirsh U (1993) Structural optimization. Fundamentals and applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  23. Klinge S (2012a) Inverse analysis for multiphase nonlinear composites with random microstructure. Int J Multiscale Comp Eng 10(4):361–373

    Article  Google Scholar 

  24. Klinge S (2012b) Parameter identification for two-phase nonlinear composites. Comput Struct 108–109:118–124

  25. Klinge S (2013) Determination of the geometry of the RVE for cancellous bone by using the effective complex shear modulus. Biomechan Model Mechanobiol 12(2):401–412

    Article  Google Scholar 

  26. Klinge S, Hackl K (2012) Application of the multiscale FEM to the modeling of nonlinear composites with a random microstructure. Int J Multiscale Comp Eng 10(3):213–227

    Article  Google Scholar 

  27. Klinge S, Bartels A, Steinmann P (2012a) Modeling of curing processes based on a multi-field potential. Single- and multiscale aspects. Int J Solid Struct 49:2320–2333

    Article  Google Scholar 

  28. Klinge S, Bartels A, Steinmann P (2012b) The multiscale approach to the curing of polymers incorporating viscous and shrinkage effects. Int J Solid Struct 49:3883–3900

    Article  Google Scholar 

  29. Kohli HS, Carey GF (1993) Shape optimization using adaptive shape refinement. Int J Numer Meth Eng 36(14):2435–2452

    Article  MATH  MathSciNet  Google Scholar 

  30. Levenberg K (1944) A method for the solution of certain problems in least squares. Quart Appl Math 2:164–168

    MATH  MathSciNet  Google Scholar 

  31. Luenberger D, Ye Y (2008) Linear and nonlinear programming. Springer Publications, New York

    MATH  Google Scholar 

  32. Mahnken R (2013) Thermodynamic consistent modeling of polymer curing coupled to viscoelasticity at large strains. Int J Solid Struct 50:203–2021

  33. Mahnken R, Stein E (1996a) Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int J Plast 12(4):451–479

    Article  MATH  Google Scholar 

  34. Mahnken R, Stein E (1996b) A unified approach for parameter identification of inelastic material models in the frame of finite element method. Comput Meth Appl Mech Eng 136:225–258

    Article  MATH  Google Scholar 

  35. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MATH  MathSciNet  Google Scholar 

  36. Miehe C, Schröder J, Schotte J (1999) Computational homogenisation analysis in finite plasticity, simulation of texture development in polycrystalline materials. Comp Met Appl Mech Eng 171:387–418

    Article  MATH  Google Scholar 

  37. Miehe C, Schotte J, Lambrecht M (2002) Homogenisation of inelastic solid materials at finite strains based on incremental minimization principles. J Mech Phys Solids 50:2123–2167

  38. Musayev K, Hackl K, Baitsch M (2013) Frequency domain waveform inversion in a tunnel environment. PAMM 13(1):323–324

  39. Nocedal J, Wright SJ (1999) Numerical optimization. Springer-Verlag, Wien

  40. O’Brien DJ, Sottos NR, White SR (2007) Cure-dependent viscoelastic Poisson’s ratio of epoxy. Exp Mech 47:237–249

  41. Oskay C, Fish J (2008) On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogenepous systems. Comput Mech 42:181–195

    Article  MATH  Google Scholar 

  42. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipies in fortran. Cambridge University Press, Cambridge

    Google Scholar 

  43. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solid Struct 35:3455–3482

    Article  MATH  Google Scholar 

  44. Rojas R (1996) Neural networks. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  45. Schmidt U, Mergheim J, Steinmann P (2012) Multiscale parameter identification. Int J Multiscale Comp Eng 10(4):327–342

    Article  Google Scholar 

  46. Schmidt U, Mergheim J, Steinmann P (2014) Identification of elastoplastic microscopic material parameters within a homogenization scheme. Int J Numer Methods Eng (submitted)

  47. Simo J, Hughes TJR (1998) Computational inelasticity. Springer Verlag, New York

    MATH  Google Scholar 

  48. Sokolowski J, Zolesio J (1992) Introduction to shape optimization. Shape sensitivity analysis. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  49. Sundararaghavan V, Zabaras N (2006) Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multiscale homogenization. Int J Plast 22(10):1799–1824

    Article  MATH  Google Scholar 

  50. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. An introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  51. Vidal CA, Haber RB (1993) Design sensitivity analysis for rate-independent elastoplasticity. Comput Meth Appl Mech Eng 107:393–431

    Article  MATH  MathSciNet  Google Scholar 

  52. Yu X, Gen M (2010) Introduction to the evolution algorithms. Springer-Verlag, New York

    Book  Google Scholar 

  53. Zienkiewicz O, Taylor R (2000) The finite element method. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  54. Zohdi TI (2003) Constrained inverse formulation in random material design. Comput Meth Appl Mech Eng 192:3179–3194

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The second author acknowledges funding by the ERC-Advanced Grant MOCOPOLY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Klinge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinge, S., Steinmann, P. Inverse analysis for heterogeneous materials and its application to viscoelastic curing polymers. Comput Mech 55, 603–615 (2015). https://doi.org/10.1007/s00466-015-1126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1126-5

Keywords

Navigation