Skip to main content
Log in

Application of the multiscale FEM to the modeling of cancellous bone

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This paper considers the application of multiscale finite element method (FEM) to the modeling of cancellous bone as an alternative for Biot’s model, the main intention of which is to decrease the extent of the necessary laboratory tests. At the beginning, the paper gives a brief explanation of the multiscale concept and thereafter focuses on the modeling of the representative volume element and on the calculation of the effective material parameters, including an analysis of their change with respect to increasing porosity. The latter part of the paper concentrates on the macroscopic calculations, which is illustrated by the simulation of ultrasonic testing and a study of the attenuation dependency on material parameters and excitation frequency. The results endorse conclusions drawn from the experiments: increasing excitation frequency and material density cause increasing attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson CC, Marutyan KR, Holland M, Wear KA, Miller JG (2008) Interference between wave modes may contribute to the negative dispersion observed in cancellous bone. J Acoust Soc Am 124(3): 1781–1789

    Article  Google Scholar 

  • Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21(3): 979–986

    Article  Google Scholar 

  • Ashman RB, Corin JD, Buskirk WCV, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17(5): 349–361

    Article  Google Scholar 

  • Ashman RB, Corin JD, Turner CH (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20(10): 979–986

    Article  Google Scholar 

  • Barkmann E, Kantorovich E, Singal C, Hans D, Genant H, Heller M, Gluer C (2000) A new method for quantitative ultrasound measurement at multiple skeletal sites. J Clin Densitom 3: 1–7

    Article  Google Scholar 

  • Bas PYL, Luppé F, Conoir JM, Franklin H (2004) N-shell cluster in watter: multiple scattering and splitting of resonances. J Acoust Soc Am 115(4): 1460–1467

    Article  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice-Hall International, Englewood Cliffs

    Google Scholar 

  • Batoz JL, Tahar MB (1982) Evaluation of new quadrilateral thin plate bending element. Int J Num Meth Eng 18: 1655–1677

    Article  MATH  Google Scholar 

  • Bauer AQ, Marutyan KR, Holland MR, Miller JG (2008) Negative dispersion in bone: the role of interference in measurements of the apparent phase velocity of two temporally overlapping signals. J Acoust Soc Am 123(4): 2407–2414

    Article  Google Scholar 

  • Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1): 27–35

    Article  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2): 168–178

    Article  MathSciNet  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2): 179–191

    Article  MathSciNet  Google Scholar 

  • Bossy E, Talmant M, Laugier P (2004a) Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 115: 2314–2324

    Article  Google Scholar 

  • Bossy E, Talmant M, Laugier P (2004b) Bi-directional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test material. IEEE Trans Ultrason Ferroelectr Freq Control 51: 71–79

    Article  Google Scholar 

  • Bossy E, Padilla F, Peyrin F, Laugier P (2005) Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys Med Biol 50: 5545–5556

    Article  Google Scholar 

  • Buchanan JL, Gilbert RP (2006) Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math Comput Model 45(3–4): 281–308

    MathSciNet  Google Scholar 

  • Buchanan JL, Gilbert RP, Khashanah K (2002) Recovery of the poroelastic parameters of cancellous bone using low frequency acoustic interrogation. In: Wirgin A (ed) Acoustic, mechanics, and the related topics of mathematical analysis, World Scientific, pp 41–47

  • Buchanan JL, Gilbert RP, Khashanah K (2004) Determination of the parameters of cancellous bone using low frequency acoustic measurements. J Comput Acoust 12(2): 99–126

    Article  MATH  Google Scholar 

  • Droin P, Berger G, Laugier P (1998) Velocity dispersion of acoustic waves in cancellous bone. IEEE Trans Ultrason Ferroelectr Freq Control 45: 581–592

    Article  Google Scholar 

  • Fang M, Gilbert RP, Panachenko A, Vasilic A (2007) Homogenizing the time-harmonic acoustics of bone: the monophasic case. Math Comput Model 46: 331–340

    Article  MATH  Google Scholar 

  • Gilbert RP, Lin ZY, Hackl K (1998) Acoustic green function approximations. J Comput Acoust 6(4): 435–452

    Article  Google Scholar 

  • Hackl K (1997) A framework for nonlinear shells based on generalized stress and strain measures. Int J Solids Struct 34(13): 1609–1632

    Article  MATH  Google Scholar 

  • Hackl K (1998) Asymptotic methods in underwater acoustics. In: Florian K, Hackl K, Schnitzer F, Tutschke W (eds) Generalized analytic functions—theory and application to mechanics. Kluwer, Academic, , pp 229–240

    Google Scholar 

  • Haïat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: A three-dimensional model simulation. J Bone Miner Res 22: 665–674

    Article  Google Scholar 

  • Haïat G, Lhémery A, Renaud F, Padilla F, Laugier P, Naili S (2008a) Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption. J Acoust Soc Am 124(6): 4047–4058

    Article  Google Scholar 

  • Haïat G, Padilla F, Peyrin F, Laugier P (2008b) Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy. J Acoust Soc Am 123(3): 1694–1705

    Article  Google Scholar 

  • Hall DE (1993) Basic acoustics. Krieger Publishing Company, Malabar Florida

    Google Scholar 

  • Hazanov S, Amieur M (1995) On overall properties of elastic heterogeneous bodies smaller than representative volume. Int J Eng Sci 33(9): 1289–1301

    Article  MATH  Google Scholar 

  • Hildebrand T, Rüegsegger P (1997) Qualification of bone microarchitecture with the structure model index. Comp Meth Biomech Biomed Eng 1: 15–23

    Article  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11: 357–372

    Article  MATH  Google Scholar 

  • Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A 326: 131–147

    Article  MATH  Google Scholar 

  • Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA (2000) Heterogeneity of bone lamellar-level elastic moduli. Bone 26: 603–609

    Article  Google Scholar 

  • Hollister SJ, Kikuchi N (1994) Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue. Biotechnol Bioeng 43(7): 586–596

    Article  Google Scholar 

  • Hosokawa A (2006) Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods. Ultrasonics 44: 227–231

    Article  Google Scholar 

  • Hosokawa A, Otani T (1997) Ultrasonic wave propagation in bovine cancellous bone. J Acoust Soc Am 101: 558–562

    Article  Google Scholar 

  • Hosokawa A, Otani T (1998) Acoustic anisotropy in bovine cancellous bone. J Acoust Soc Am 103: 2718–2722

    Article  Google Scholar 

  • Hughes ER, Leighton TG, Petley GW, White PR (1999) Ultrasonic propagation in cancellous bone: a new stratified model. Ultrasound Med Biol 25: 811–821

    Article  Google Scholar 

  • Ilic S (2008) Application of the multiscale FEM to the modeling of composite materials. Ph.D. Thesis, Ruhr University Bochum, Germany

  • Ilic S, Hackl K (2004) Homogenisation of random composites via the multiscale finite-element method. PAMM 4: 326–327

    Article  Google Scholar 

  • Ilic S, Hackl K (2007) Application of the multiscale fem to the modeling of heterogeneous materials. In: Proceedings of the first seminar on the mechanics of multifunctional materials, pp 47–51

  • Laugier P, Berger G, Giat P, Bonnin-Fayet P, Laval-Jeantet M (1994) Ultrasound attenuation imaging in the os calcis: an improved method. Ultrason Imaging 16: 65–76

    Article  Google Scholar 

  • Luo G, Kaufman JJ, Chiabrera A, Bianco B, Kinney JH, Haupt D, Ryaby JT, Siffert RS (1999) Computational methods for ultrasonic bone assessment. Ultrasound Med Biol 25: 823–830

    Article  Google Scholar 

  • Luppé F, Conoir JM, Franklin H (2002) Scattering by fluid cylinder in a porous medium: application to trabecular bone. J Acoust Soc Am 111(6): 2573–2582

    Article  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Dover Publications, New York

    MATH  Google Scholar 

  • McKelvie ML, Palmer SB (1991) The interaction of ultrasound with cancellous bone. Phys Med Biol 10: 1331–1340

    Article  Google Scholar 

  • Miehe C, Schotte J, Lambrecht M (2002) Homogenisation of inelastic solid materials at finite strains based on incremental minimization principles. J Mech Phys Solids 50: 2123–2167

    Article  MATH  MathSciNet  Google Scholar 

  • Mura T (1993) Micromechanics: overall properties of heterogeneous solids. Kluwer, Dordrecht

    Google Scholar 

  • Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Nord-Holland Series in: Applied Mathematics and Mechanics, vol 37

  • Nicholson PHF, Lowet G, Langton CM, Dequeker J, der Perre GV (1996) A comparison of time-domain and frequency domain approaches to ultrasonic velocity measurement in trabecular bone. Phys Med Biol 41: 2421–2435

    Article  Google Scholar 

  • Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12): 1575–1583

    Article  Google Scholar 

  • Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2): 112–132

    Article  Google Scholar 

  • Padilla F, Laugier P (2000) Phase and group velocities of fast and slow compressional waves in trabecular bone. J Acoust Soc Am 108: 1949–1952

    Article  Google Scholar 

  • Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P (2008) Relationship of trabecular bone structure with quantitative ultrasound parameters: In vitro study of human proximal femur using transmission and backscatter measurements. Bone 42: 1193–1202

    Article  Google Scholar 

  • Pahr DH, Zysset PK (2008) Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech Model Mechanobiol 7: 463–476

    Article  Google Scholar 

  • Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J Biomech 26(2): 111–119

    Article  Google Scholar 

  • Rietbergen BV, Odgaard A, Kabel J, Huiskes R (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29(12): 1653–1657

    Google Scholar 

  • Schröder J (2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitäts Problemen. Habilitationsshrift, Universität Stuttgart, Deutschland

  • Strelitzki R, Evans JA (1996) On the measurement of the velocity of ultrasound in the os calcis using short pulses. Eur J Ultrasound 4: 205–213

    Article  Google Scholar 

  • Taylor RL (1998) Finite element analysis of linear shell problems. In: Whiteman J (eds) The mathematics of finite element and applications, vol VI. Academic Press, London

    Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer Verlag, New York

    MATH  Google Scholar 

  • Wanji C, Cheung YK (1997) Refined quadrilateral discrete kirchhoff thin plate bending element. Int J Num Meth Eng 40: 3937– 3953

    Article  MATH  Google Scholar 

  • Wear KA (2000) Measurement of phase velocity and group velocity in human calcaneus. Ultrasound Med Biol 26: 641–646

    Article  Google Scholar 

  • Williams JL, Johnson WJH (1989) Elastic constants of composites formed from pmma bone cement and anisotropic bovine tibial cancellous bone. J Biomech 22(6/7): 673–682

    Article  Google Scholar 

  • Willis JR (1981) Variational and related methods for the overall properties of composites. Adv Appl Mech 21: 1–78

    Article  MATH  MathSciNet  Google Scholar 

  • Willis JR (1982) Elasticity theory of composites. Mechanics of Solids, the Rodney Hill 60th Anniversary Volume, pp 653–686

  • Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth-Heinemann, London

    MATH  Google Scholar 

  • Zohdi TI, Wriggers P (2005) Introduction to Computational Micromechanics. Springer Series in: Lecture notes in applied and computational mechanics, vol 20

  • Zysset P (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36: 1469–1485

    Article  Google Scholar 

  • Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32: 1005–1012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Ilic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilic, S., Hackl, K. & Gilbert, R. Application of the multiscale FEM to the modeling of cancellous bone. Biomech Model Mechanobiol 9, 87–102 (2010). https://doi.org/10.1007/s10237-009-0161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-009-0161-6

Keywords

Navigation