Skip to main content
Log in

Implicit Representation of Sparse Hereditary Families

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

For a hereditary family of graphs \({{\mathcal {F}}}\), let \({{\mathcal {F}}}_n\) denote the set of all members of \({{\mathcal {F}}}\) on n vertices. The speed of \({{\mathcal {F}}}\) is the function \(f(n)=|{{\mathcal {F}}}_n|\). An implicit representation of size \(\ell (n)\) for \({{\mathcal {F}}}_n\) is a function assigning a label of \(\ell (n)\) bits to each vertex of any given graph \(G\in {{\mathcal {F}}}_n\), so that the adjacency between any pair of vertices can be determined by their labels. Bonamy, Esperet, Groenland, and Scott proved that the minimum possible size of an implicit representation of \({{\mathcal {F}}}_n\) for any hereditary family \({{\mathcal {F}}}\) with speed \(2^{\Omega (n^2)}\) is \((1+o(1))\log _2|{{\mathcal {F}}}_n|/n\) (\(=\Theta (n)\)). A recent result of Hatami and Hatami shows that the situation is very different for very sparse hereditary families. They showed that for every \(\delta >0\) there are hereditary families of graphs with speed \(2^{O(n\log n)}\) that do not admit implicit representations of size smaller than \(n^{1/2-\delta }\). In this note we show that even a mild speed bound ensures an implicit representation of size \(O(n^c)\) for some \(c<1\). Specifically we prove that for every \({\varepsilon }>0\) there is an integer \(d\ge 1\) so that if \({{\mathcal {F}}}\) is a hereditary family with speed \(f(n) \le 2^{(1/4-{\varepsilon })n^2}\) then \({{\mathcal {F}}}_n\) admits an implicit representation of size \(O(n^{1-1/d}\log n)\). Moreover, for every integer \(d>1\) there is a hereditary family for which this is tight up to the logarithmic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alekseev, V.E.: On the entropy values of hereditary classes of graphs. Discrete Math. Appl. 3(2), 191–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N.: The number of polytopes, configurations and real matroids. Mathematika 33(1), 62–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: Tools from higher algebra. In: Handbook of Combinatorics, Vol. 2, pp. 1749–1783. North Holland, Amsterdam (1995)

  4. Alon, N.: Asymptotically optimal induced universal graphs. Geom. Funct. Anal. 27(1), 1–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alon, N., Balogh, J., Bollobás, B., Morris, R.: The structure of almost all graphs in a hereditary property. J. Comb. Theory Ser. B 101(2), 85–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon, N., Moran, S., Yehudayoff, A.: Sign rank versus Vapnik–Chervonenkis dimension. Sb. Math. 208(12), 1724–1757 (2017)

  7. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: variations and applications. J. Comb. Theory Ser. B 76(2), 280–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B., Thomason, A.: Hereditary and monotone properties of graphs. In: The Mathematics of Paul Erdős, vol. 2. Algorithms Combin., vol. 14, pp. 70–78. Springer, Berlin (1997)

  9. Bonamy, M., Esperet, L., Groenland, C., Scott, A.: Optimal labelling schemes for adjacency, comparability, and reachability. In: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1109–1117. ACM, New York (2021)

  10. Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom. 4(5), 467–489 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in \(\textbf{R} ^d\). Discrete Comput. Geom. 1(3), 219–227 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hatami, H., Hatami, P.: The implicit graph conjecture is false. In: IEEE 63rd Annual Symposium on Foundations of Computer Science (Denver 2022), pp. 1134–1137. IEEE Computer Soc., Los Alamitos (2022)

  13. Haussler, D.: Sphere packing numbers for subsets of the Boolean \(n\)-cube with bounded Vapnik–Chervonenkis dimension. J. Comb. Theory Ser. A 69(2), 217–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kövari, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    Article  MATH  Google Scholar 

  16. Matoušek, J., Welzl, E., Wernisch, L.: Discrepancy and approximations for bounded VC-dimension. Combinatorica 13(4), 455–466 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory Ser. B 103(1), 114–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moon, J.W.: On minimal \(n\)-universal graphs. Proc. Glasgow Math. Assoc. 7(1), 32–33 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Warren, H.E.: Lower bounds for approximation by nonlinear manifolds. Trans. Am. Math. Soc. 133, 167–178 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Welzl, E.: Partition trees for triangle counting and other range searching problems. In: 4th Annual Symposium on Computational Geometry (Urbana 1988), pp. 23–33. ACM, New York (1988)

Download references

Acknowledgements

I thank Hamed and Pooya Hatami for helpful comments and three anonymous referees for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Alon.

Additional information

Editor in Charge: János Pach

Dedicated to the memory of Eli Goodman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by NSF Grant DMS-2154082 and BSF Grant 2018267.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alon, N. Implicit Representation of Sparse Hereditary Families. Discrete Comput Geom (2023). https://doi.org/10.1007/s00454-023-00521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00454-023-00521-0

Keywords

Mathematics Subject Classification

Navigation