Skip to main content
Log in

Asymptotically optimal induced universal graphs

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove that the minimum number of vertices of a graph that contains every graph on k vertices as an induced subgraph is \({(1+o(1)) 2^{(k-1)/2}}\). This improves earlier estimates of Moon, of Bollobás and Thomason, of Brightwell and Kohayakawa and of Alstrup, Kaplan, Thorup and Zwick. The method supplies similarly sharp estimates for the analogous problems for directed graphs, tournaments, bipartite graphs, oriented graphs and more. We also show that if \({{n \choose k}2^{-{k \choose 2}} =\lambda}\) (where \({\lambda}\) can be a function of k) then the probability that the random graph G(n, 0.5) contains every graph on k vertices as an induced subgraph is \({(1-e^{-\lambda})^2+o(1)}\).

The proofs combine combinatorial and probabilistic arguments with tools from group theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai, J. Komlós and E. Szemerédi. First occurrence of Hamilton cycles in random graphs. In: Cycles in Graphs (Burnaby, B.C., 1982), pp. 173–178, North-Holland Math. Stud., Vol. 115. North-Holland, Amsterdam (1985).

  2. Alon N.: Bipartite decomposition of random graphs. J. Combinatorial Theory, Ser. B 113, 220–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon and J.H. Spencer. The Probabilistic Method, Fourth Edition. Wiley, London (2016), pp. xv+375.

  4. S. Alstrup, H. Kaplan, M. Thorup and U. Zwick. Adjacency Labeling Schemes and Induced-Universal Graphs, Proc. STOC 2015, pp. 625–634.

  5. S. Alstrup, S. Dahlgaard and M. Knudsen. Optimal Induced Universal Graphs and Adjacency Labeling for Trees, Proc. FOCS 2015, pp. 1311–1326.

  6. Babai L.: On the orders of uniprimitive permutation groups. Ann. Math. 113, 553–568 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Babai. Automorphism groups, isomorphism, reconstruction. In: Handbook of Combinatorics, Vol. 1, 2. Elsevier, Amsterdam (1995), pp. 1447–1540.

  8. Bochert A.: Ueber die Transitivitätsgrenze der Substitutionengruppen, welche die alternirende ihres Grades nicht enthalten. (German) Math. Ann. 33(no. 4), 572–583 (1889)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bollobás. The Evolution of Sparse Graphs, Graph Theory and Combinatorics (Cambridge, 1983), pp. 35–57. Academic Press, London (1984).

  10. Bollobás B., Erdős P.: Cliques in random graphs. Math. Proc. Cambridge Philos. Soc. 80(no. 3), 419–427 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bollobás B., Thomason A.: Graphs which contain all small graphs. European Journal of Combinatorics 2(1), 13–15 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Bollobás and A. Thomason. Random Graphs of Small Order. Random graphs ’83 (Poznan 1983), pp. 47–97, North-Holland Math. Stud. 118. North-Holland, Amsterdam (1985).

  13. Brightwell G.R., Kohayakawa Y.: Ramsey properties of orientations of graphs. Random Structures and Algorithms 4, 413–428 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Butler S.: Induced-universal graphs for graphs with bounded maximum degree. Graphs and Combinatorics 25, 461–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung F.R.K.: Universal graphs and induced-universal graphs. Journal of Graph Theory 14, 443–454 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dixon J.D.: The maximum order of the group of a tournament. Can. Math. Bull. 10, 503–505 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dixon J.D., Mortimer B.: Permutation Groups. Springer, New York (1996)

    Book  MATH  Google Scholar 

  18. L. Esperet, A. Labourel and P. Ochem. On induced-universal graphs for the class of bounded-degree graphs. Inf. Process. Lett. 108 (2008), 255–260

  19. Erdős P., Rényi A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  20. C. Gavoille and A. Labourel. Shorter implicit representation for planar graphs and bounded treewidth graphs. Proc. ESA 2007, pp. 582–593. Springer, Berlin (2007).

  21. Kannan S., Naor M., Rudich S.: Implicit representation of graphs. SIAM J. Discrete Math. 5, 596–603 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kempe J., Pyber L., Shalev A.: Permutation groups, minimal degrees and quantum computing. Groups Geom. Dyn. 1(no. 40), 553–584 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Komlós J., Szemerédi E.: Limit distributions for the existence of Hamilton circuits in a random graph. Discrete Mathematics 43, 55–63 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lozin V.V., Rudolf G.: Minimal universal bipartite graphs. Ars Comb. 84, 345–356 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Matula D.W.: The largest clique size in a random graph. Southern Methodist University, Dallas, Texas (1976)

    Google Scholar 

  26. Moon J.W.: On minimal n-universal graphs. Proceedings of the Glasgow Mathematical Association 7(1), 32–33 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.W. Moon. Topics on Tournaments, New York (1968).

  28. Praeger C., Saxl J.: On the order of primitive permutation groups. Bull. London Math. Soc. 12, 303–308 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Rado. Universal graphs and universal functions. Acta. Arith. (1964), 331–340.

  30. Vizing V.G.: Some unsolved problems in graph theory. Russian Mathematical Surveys 23(6), 125–141 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wielandt H.: Finite Permutation Groups. Acad. Press, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Alon.

Additional information

Research supported in part by a USA-Israeli BSF Grant 2012/107, by an ISF Grant 620/13 and by the Israeli I-Core program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alon, N. Asymptotically optimal induced universal graphs. Geom. Funct. Anal. 27, 1–32 (2017). https://doi.org/10.1007/s00039-017-0396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-017-0396-9

Mathematics Subject Classification

Navigation