Skip to main content

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 216 Accesses

Abstract

An induced hereditary class of graphs \(\mathcal {G}\) admits a \(\chi \)-binding function, if there exists a function \(f : \mathbb {N}\rightarrow \mathbb {R^{+}}\) such that \(\chi (G) \le f(\omega (G))\) for every \(G \in \mathcal {G}\). In this paper, we introduce a generalized version of \(\chi \)-binding function called \((\chi , \alpha , \omega )\)-binding function. An induced hereditary class of graphs \(\mathcal {G}\) admits a \((\chi ,\alpha ,\omega )\)-binding function, if there exists a function \(f : \mathbb {N}\rightarrow \mathbb {R^{+}}\) such that \(\chi (G) \le f(\alpha (G),\omega (G))\) for every \(G \in \mathcal {G}\). We prove that the class of \(\{C_4,K_1+2K_2\}\)-free graphs admits a linear \((\chi ,\alpha ,\omega )\)-binding function \(f(\alpha , \omega )=2\alpha +\omega \) and an \((\omega +2\alpha )\)-coloring of G can be found in \(O(n^5)\) time, where \(n=|V(G)|\). We note that there exists no function \(f : \mathbb {N}\rightarrow \mathbb {R^{+}}\) such that \(\chi (G) \le f(\omega (G))\) or \(\chi (G) \le f(\alpha (G))\) for every \(\{C_4,K_1+2K_2\}\)-free graph G. In addition, we prove that, for a general graph G with at least one vertex, \(\chi (G)\le 2 ^ {\frac{\omega (\omega +1)}{2}} \alpha ^{\omega -1} \), where \(\omega =\omega (G)\) and \(\alpha =\alpha (G)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdös, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Farber, M.: On diameters and radii of bridged graphs. Discret. Math. 73(3), 249–260 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fouquet, J.-L., Giakoumakis, V., Maire, F., Thuillier, H.: On graphs without \(p_5\) and \(\overline{P_5}\). Discret. Math. 146(1–3), 33–44 (1995)

    Article  MATH  Google Scholar 

  4. Gyárfás, A.: On Ramsey covering-numbers. Infinite Finite Sets 2, 801–816 (1975)

    MathSciNet  MATH  Google Scholar 

  5. Gyárfás, A.: Problems from the world surrounding perfect graphs. Appl. Math. 19(3–4), 413–441 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Kierstead, H.A., Penrice, S.G.: Radius two trees specify \(\chi \)-bounded classes. J. Graph Theory 18(2), 119–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 9 (1955)

    Google Scholar 

  8. Scott, A., Seymour, P.: Induced subgraphs of graphs with large chromatic number. i. odd holes. J. Comb. Theory, Ser. B 121, 68–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Scott, A.D.: Induced trees in graphs of large chromatic number. J. Graph Theory 24(4), 297–311 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sumner, D.P.: Subtrees of a graph and chromatic number. In: Chartrand, G. (eds.), The Theory and Applications of Graphs, pp. 557–576. Wiley, New York

    Google Scholar 

  11. Wagon, S.: A bound on the chromatic number of graphs without certain induced subgraphs. J. Comb. Theory, Ser. B 29(3), 345–346 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shalu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shalu, M.A., Sandhya, T.P. (2023). A Generalization of \(\chi \)-Binding Functions. In: Subrahmanyam, P.V., Vijesh, V.A., Jayaram, B., Veeraraghavan, P. (eds) Synergies in Analysis, Discrete Mathematics, Soft Computing and Modelling. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-7014-6_11

Download citation

Publish with us

Policies and ethics