Skip to main content
Log in

Harnessing nature’s potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV–Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV–Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20–25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.

Graphical abstract

Schematic representation of synthesis and characterization of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and materials of the paper can only be accessed once the paper is available online.

References

  1. Foulkes R, Man E, Thind J et al (2020) The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 8(17):4653–4664. https://doi.org/10.1039/D0BM00558D

    Article  CAS  PubMed  Google Scholar 

  2. Ezike TC, Okpala US, Onoja UL (2023) Advances in drug delivery systems, challenges, and future directions. Heliyon 9(6):e17488. https://doi.org/10.1016/j.heliyon.2023.e17488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alrushaid N, Khan FA, Al-Suhaimi EA et al (2023) Nanotechnology in cancer diagnosis and treatment. Pharma 15:1025. https://doi.org/10.3390/pharmaceutics15031025

    Article  CAS  Google Scholar 

  4. Han F, Meng Q, Xie E et al (2023) Engineered biomimetic micro/nanomaterials for tissue regeneration. Front Bioeng Biotechnol 11:1205792. https://doi.org/10.3389/fbioe.2023.1205792

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yao Y, Zhou Y, Liu L et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193. https://doi.org/10.3389/fmolb.2020.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tenchov R, Bird R, Curtze AE et al (2021) Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15(11):16982–17015. https://doi.org/10.1021/acsnano.1c04996

    Article  CAS  PubMed  Google Scholar 

  7. Shariatzadeh S, Moghimi N, Khalafi F et al (2022) Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon. Front Bioeng Biotechnol 10:847433. https://doi.org/10.3389/fbioe.2022.847433

  8. Khursheed R, Dua K, Vishwas S et al (2022) Biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. Biomed Pharmacother 150:112951. https://doi.org/10.1016/j.biopha.2022.112951

    Article  CAS  PubMed  Google Scholar 

  9. Xu JJ, Zhang WC, Guo YW et al (2022) Metal nanoparticles as a promising technology in targeted cancer treatment. Drug deliv 29(1):664–678. https://doi.org/10.1080/10717544.2022.2039804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J 71(3):209–249. https://doi.org/10.3322/caac.21660

  11. Kher C, Kumar S (2022) The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: a review. Cureus 14(9):e29059. https://doi.org/10.7759/cureus.29059

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alshehri S, Imam SS, Rizwanullah M (2021) Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: preclinical promise and translational challenges. Pharm 13:24. https://doi.org/10.3390/pharmaceutics13010024

    Article  CAS  Google Scholar 

  13. Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20(1):262. https://doi.org/10.1186/s12951-022-01477-8

    Article  Google Scholar 

  14. Shameli K, Ahmad MB, Yunus WM et al (2010) Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomed 5:875–887. https://doi.org/10.2147/IJN.S13632

    Article  CAS  Google Scholar 

  15. Tsuji M, Hashimoto M, Nishizawa Y (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry (Weinheim an der Bergstrasse, Germany) 11(2):440–452. https://doi.org/10.1002/chem.200400417

    Article  CAS  PubMed  Google Scholar 

  16. Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–1871. https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  17. Kharissova OV, Kharisov BI, Oliva González CM (2019) Greener synthesis of chemical compounds and materials. R Soc Open Sci 6(11):191378. https://doi.org/10.1098/rsos.191378

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Bahrulolum H, Nooraei S, Javanshir N et al (2021) Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol 19:86. https://doi.org/10.1186/s12951-021-00834-3

    Article  Google Scholar 

  19. Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules 12(1):31. https://doi.org/10.3390/biom12010031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaudhary R, Nawaz K, Khan AK (2020) An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10(11):1498. https://doi.org/10.3390/biom10111498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh J, Dutta T, Kim KH et al (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  22. Vidyasagar PRR, Singh SK et al (2023) Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv 4:1831–1849. https://doi.org/10.1039/D2MA01105K

    Article  CAS  Google Scholar 

  23. Rahuman HBH, Dhandapani R, Narayanan S et al (2022) Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 16(4):115–144. https://doi.org/10.1049/nbt2.12078

    Article  Google Scholar 

  24. Pandit C, Roy A, Ghotekar S et al (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ Sci 34(3):101869. https://doi.org/10.1016/j.jksus.2022.101869

    Article  Google Scholar 

  25. Barabadi H, Noqani H, Ashouri F et al (2023) Nanobiotechnological approaches in anticoagulant therapy: the role of bioengineered silver and gold nanomaterials. Talanta 256:124279. https://doi.org/10.1016/j.talanta.2023.124279

    Article  CAS  PubMed  Google Scholar 

  26. Barabadi H, Mobaraki K, Ashouri F et al (2023) Nanobiotechnological approaches in antinociceptive therapy: animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 316:102917. https://doi.org/10.1016/j.cis.2023.102917

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Liu Y, Lu M et al (2020) Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Arch Oral Biol 116:104762. https://doi.org/10.1016/j.archoralbio.2020.104762

    Article  CAS  PubMed  Google Scholar 

  28. Paladini F, Pollini M (2019) Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel) 12(16):2540. https://doi.org/10.3390/ma12162540

  29. Balan K, Qing W, Wang Y et al (2016) Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv 6:40162–40168. https://doi.org/10.1039/C5RA24391B

  30. Ghosh R, Sarkhel S, Saha K et al (2021) Synthesis, characterization & evaluation of venom neutralization potential of silver nanoparticles mediated Alstonia scholaris Linn bark extract. Toxicol Rep 8:888–895. https://doi.org/10.1016/j.toxrep.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khorrami S, Dogani M, Mahani SE et al (2023) Neuroprotective activity of green synthesized silver nanoparticles against methamphetamine-induced cell death in human neuroblastoma SH-SY5Y cells. Sci Rep 13(1):11867. https://doi.org/10.1038/s41598-023-37917-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  33. Wahab S, Khan T, Adil M et al (2021) Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 7(7):e07448. https://doi.org/10.1016/j.heliyon.2021.e07448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh P, Ali SW, Kale RD (2023) Antimicrobial nanomaterials as advanced coatings for self-sanitizing of textile clothing and personal protective equipment. ACS Omega 8(9):8159–8171. https://doi.org/10.1021/acsomega.2c06343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Subramanian P, Nishan M (2015) Biological activities of greater galangal, Alpinia galanga—a Review. Res Rev J Bot Sci:15–19

  36. Imchen P, Ziekhru M, Zhimomi BK (2022) Biosynthesis of silver nanoparticles using the extract of Alpinia galanga rhizome and Rhus semialata fruit and their antibacterial activity. Inorg Chem Commun 142:109599. https://doi.org/10.1016/j.inoche.2022.109599

    Article  CAS  Google Scholar 

  37. Wen C, Zhang J, Zhang H et al (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops–a review. Ultrason Sonochem 48:538–549

    Article  CAS  PubMed  Google Scholar 

  38. Canovi M, Lucchetti J, Stravalaci M et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors (Basel, Switzerland) 12(12):16420–16432. https://doi.org/10.3390/s121216420

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem 54:7429–7436. https://doi.org/10.1021/jf0611668

    Article  CAS  PubMed  Google Scholar 

  40. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116. https://doi.org/10.1038/nprot.2006.179

    Article  CAS  PubMed  Google Scholar 

  41. Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76(1):50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  CAS  Google Scholar 

  42. Masum MMI, Siddiqa MM, Ali KA (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front microbiol 10:820. https://doi.org/10.3389/fmicb.2019.00820

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dehghanizade S, Arasteh J, Mirzaie A et al (2018) Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 46(1):160–168. https://doi.org/10.1080/21691401.2017.1304402

    Article  CAS  PubMed  Google Scholar 

  44. Bilal M, Rasheed T, Iqbal HMN et al (2017) Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 105(Pt 1):393–400. https://doi.org/10.1016/j.ijbiomac.2017.07.047

    Article  CAS  PubMed  Google Scholar 

  45. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150. https://doi.org/10.1007/s11468-008-9066-y

    Article  CAS  Google Scholar 

  46. Bilal M, Khan S, Ali J et al (2019) Biosynthesized silver supported catalysts for disinfection of Escherichia coli and organic pollutant from drinking water. J Mol Liq 281:295–306. https://doi.org/10.1016/j.molliq.2019.02.087

    Article  CAS  Google Scholar 

  47. Qais FA, Shafiq A, Khan HM et al (2019) Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem and Appl. https://doi.org/10.1155/2019/4649506

  48. Ahmed S, Ahmad M, Swami BL et al (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  49. Raghunandan D, Bedre MD, Basavaraja S et al (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B 79(1):235–240. https://doi.org/10.1016/j.colsurfb.2010.04.003

    Article  CAS  Google Scholar 

  50. Praba PS, Vasantha VS, Jeyasundari J et al (2015) Synthesis of plant-mediated silver nanoparticles using Ficus microcarpa leaf extract and evaluation of their antibacterial activities. Eur Chem Bull 4(3):116–120. https://doi.org/10.17628/ECB.2015.4.117-120

  51. Vanlalveni C, Lallianrawna S, Biswas A et al (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 11(5):2804–2837. https://doi.org/10.1039/d0ra09941d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mariadoss AVA, Ramachandran V, Shalini V et al (2019) Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog 135:103609. https://doi.org/10.1016/j.micpath.2019.103609

    Article  CAS  PubMed  Google Scholar 

  53. Ahn EY, Jin H, Park Y et al (2019) Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 101:204–216. https://doi.org/10.1016/j.msec.2019.03.095

    Article  CAS  Google Scholar 

  54. Rani P, Kumar V, Singh PP et al (2020) Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ Int 143:105924. https://doi.org/10.1016/j.envint.2020.105924

    Article  CAS  PubMed  Google Scholar 

  55. Kanniah P, Balakrishnan S, Subramanian ER (2023) Preliminary investigation on the impact of engineered PVP-capped and uncapped silver nanoparticles on Eudrilus eugeniae, a terrestrial ecosystem model. Environ Sci Pollut Res Int 30(10):25239–25255. https://doi.org/10.1007/s11356-022-21898-0

  56. Soshnikova V, Kim YJ, Singh P et al (2018) Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif Cells Nanomed Biotechnol 46(1):108–117. https://doi.org/10.1080/21691401.2017.1296849

    Article  CAS  PubMed  Google Scholar 

  57. Chen L, Huo Y, Han YX et al (2020) Biosynthesis of gold and silver nanoparticles from Scutellaria baicalensis roots and in vitro applications. Appl Phy A 126:1–12. https://doi.org/10.1007/s00339-020-03603-5

    Article  CAS  Google Scholar 

  58. Yap YH, Azmi AA, Mohd NK et al (2020) Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction. Arab J Sci Eng 45:4797–4807. https://doi.org/10.1007/s13369-020-04595-3

    Article  CAS  Google Scholar 

  59. Elumalai D, Hemavathi M, Deepaa CV et al (2017) Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol Control 2(4):15–26. https://doi.org/10.1016/j.parepi.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shanmuganathan R, Ali DM, Prabakar D et al (2018) (2018) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 25(11):10362–10370. https://doi.org/10.1007/s11356-017-9367-9

    Article  CAS  Google Scholar 

  61. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 5(6):1593–1615. https://doi.org/10.1007/s42247-021-00335-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(Suppl):238–244. https://doi.org/10.1038/ng1107

    Article  CAS  PubMed  Google Scholar 

  63. Reddy NJ, Nagoor VD, Rani M et al (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C 34:115–122. https://doi.org/10.1016/j.msec.2013.08.039

    Article  CAS  Google Scholar 

  64. Heydari R, Rashidipour M (2015) Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): synthesis and in vitro cytotoxic effect on mcf-7 cells. Int J Breast Cancer 2015:846743. https://doi.org/10.1155/2015/846743

    Article  PubMed  PubMed Central  Google Scholar 

  65. Venugopal K, Rather HA, Rajagopal K et al (2017) Synthesis of silver nanoparticles (AgNPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B Biol 167:282–289. https://doi.org/10.1016/j.jphotobiol.2016.12.013

  66. Dey S, Fageria L, Sharma A et al (2022) Silver nanoparticle-induced alteration of mitochondrial and ER homeostasis affects human breast cancer cell fate. Toxicol Rep 9:1977–1984. https://doi.org/10.1016/j.toxrep.2022.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:942916. https://doi.org/10.1155/2013/942916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rinna A, Magdolenova Z, Hudecova A et al (2015) Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 30:59–66. https://doi.org/10.1093/mutage/geu057

    Article  CAS  PubMed  Google Scholar 

  69. Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8:1168–1175. https://doi.org/10.4161/cc.8.8.8147

  70. Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342. https://doi.org/10.1021/es1020668

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Hudecová A, Kusznierewicz B, Rundén-Pran E et al (2012) Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis 27:759–769. https://doi.org/10.1093/mutage/ges046

    Article  CAS  PubMed  Google Scholar 

  72. Dakal TC, Kumar A, Majumdar RS et al (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu X, Shan K, Shao X et al (2021) Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous HeLa cell line. Int J Nanomedicine 16:753–761. https://doi.org/10.2147/IJN.S289008

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chou CC, Riviere JE, Monteiro-Riviere NA (2003) The cytotoxicity of jet fuel aromatic hydrocarbons and dose-related interleukin-8 release from human epidermal keratinocytes. Arch Toxicol 77(7):384–391

    Article  CAS  PubMed  Google Scholar 

  75. Sukirtha R, Priyanka KM, Antony JJ et al (2012) Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47(2):273–279. https://doi.org/10.1016/j.procbio.2011.11.003

    Article  CAS  Google Scholar 

  76. Sriranjani R, Srinithya B, Vellingiri V et al (2016) Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J Mol Liq 220:926–930. https://doi.org/10.1016/j.molliq.2016.05.042

    Article  CAS  Google Scholar 

  77. Botcha S, Prattipati SD (2020) Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. Bionanoscience 10:11–22. https://doi.org/10.1007/s12668-019-00683-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities provided by Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India. We thank to Professor Vineeta Batra, Department of Pathology, GIPMER, New Delhi for helping us to take TEM images of the nanoparticles. We are also thankful to the Advanced Instrumentation Research Facility (AIRF) Jawaharlal Nehru University, New Delhi to acquire FTIR spectrum of AgNPs and rhizome extract of Alpinia galanga. Authors are grateful to the Department of Biotechnology (DBT) for providing financial support under the head of “Establishment of Central Molecular Lab in GIPMER to study the diagnosis for precision medicine in order to understand the disease process and utilize it as Clinical Research Facility” with grant no. BT/INF/22/SP33063/2019.

Funding

The Department of Biotechnology (DBT), Government of India, has provided financial support under the head of “Establishment of Central Molecular Lab in GIPMER to study the diagnosis for precision medicine to understand the disease process and utilize it as a Clinical Research Facility” with grant no. BT/INF/22/ SP33063/2019.

Author information

Authors and Affiliations

Authors

Contributions

Conception EA, SSS; Data curation AA, EA, and MS; Formal Analysis EA, QZ, SSS, MB, MAA; Original draft AA, EA and MS; Revise the draft critically EA, Nimisha, AKS, QZ, MAA, MB and SSS; Approved SSS.

Corresponding author

Correspondence to Sundeep Singh Saluja.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 576 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, E., Athar, A., Nimisha et al. Harnessing nature’s potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-02993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-02993-7

Keywords

Navigation