Skip to main content
Log in

Development of wheat bran hydrolysate as Komagataella phaffii medium for heterologous protein production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Developing a Komagataella phaffii (K. phaffii, named as Pichia pastoris formerly) medium using wheat bran hydrolysate (WBH) is a potential approach for wheat bran utilization and heterologous protein by K. phaffii because K. phaffii is used as protein producer by researchers and engineers widely. In this research, the detoxification process of WBH was optimized to obtain the final procedure as pH adjusting to 10 by calcium hydroxide addition, then, 2.0 g/L active carbon absorption followed by 1 h shaking and 3,600 × g centrifugation for 10 min, finally, 3.75 mmol/L sodium thiosulfate addition for 10 min shaking followed by 3,600 × g centrifugation for 10 min. Recombinant K. phaffii-xynB harboring xylanase B gene from Aspergillus niger ATCC 1015 under alcohol oxidase 1 promoter (PAOX1) was cultivated in detoxified WBH expressing 1059.8 U/mL xylanase B which was 90.9% of that in complex medium from Pichia protocols. These researches built a solid base for detoxified WBH as a low-cost medium of K. phaffii to express heterologous protein, also provided a bright outlet for wheat bran utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317. https://doi.org/10.1007/s00253-014-5732-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K (2017) Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 35(6):681–710. https://doi.org/10.1016/j.biotechadv.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  3. Pena D, Gasser B, Zanghellini J, Steiger M, Mattanovich D (2018) Metabolic engineering of Pichia pastoris. Metab Eng 50:2–15. https://doi.org/10.1016/j.ymben.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  4. Zhu T, Sun H, Wang M, Li Y (2019) Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: Current status and future perspectives. Biotechnol J 14(6):1800694. https://doi.org/10.1002/biot.201800694

    Article  CAS  Google Scholar 

  5. Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31–31. https://doi.org/10.1186/1475-2859-4-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Higgins DR, Cregg JM (1998) Pichia protocols, vol 103. Springer

    Book  Google Scholar 

  7. Matthews CB, Kuo A, Love KR, Love JC (2018) Development of a general defined medium for Pichia pastoris. Biotechnol Bioeng 115(1):103–113. https://doi.org/10.1002/bit.26440

    Article  CAS  PubMed  Google Scholar 

  8. Plantz BA, Nickerson K, Kachman SD, Schlegel VL (2007) Evaluation of metals in a defined medium for Pichia pastoris expressing recombinant β-galactosidase. Biotechnol Prog 23(3):687–692. https://doi.org/10.1021/bp060332t

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Nguyen V, Glen J, Henderson B, Saul A, Miller LH (2005) Improved yield of recombinant merozoite surface protein 3 (MSP3) from Pichia pastoris using chemically defined media. Biotechnol Bioeng 90(7):838–847. https://doi.org/10.1002/bit.20491

    Article  CAS  PubMed  Google Scholar 

  10. Hélène B, Céline L, Patrick C, Fabien R, Christine V, Yves C, Guy M (2001) High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris. Process Biochem 36(8):907–913. https://doi.org/10.1016/S0032-9592(00)00296-X

    Article  Google Scholar 

  11. Zhang J, Mao H, Li M, Su E (2019) Cyclodextrin glucosyltransferase immobilization on polydopamine-coated Fe3O4 nanoparticles in the presence of polyethyleneimine for efficient β-cyclodextrin production. Biochem Eng J 150:107264. https://doi.org/10.1016/j.bej.2019.107264

    Article  CAS  Google Scholar 

  12. Zhang JG, Zhang Y, Li ML (2017) High-level secretion and characterization of cyclodextrin glycosyltransferase in recombinant Komagataella phaffii. J Biotechnol 259:126–134. https://doi.org/10.1016/j.jbiotec.2017.07.031

    Article  CAS  PubMed  Google Scholar 

  13. Debiagi F, Madeira TB, Nixdorf SL, Mali S (2020) Pretreatment efficiency using autoclave high-pressure steam and ultrasonication in sugar production from liquid hydrolysates and access to the residual solid fractions of wheat bran and oat hulls. Appl Biochem Biotechnol 190(1):166–181. https://doi.org/10.1007/s12010-019-03092-0

    Article  CAS  PubMed  Google Scholar 

  14. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74(1):17–24. https://doi.org/10.1016/S0960-8524(99)00160-1

    Article  CAS  Google Scholar 

  15. Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eken-Saraçoğlu N, Arslan Y (2000) Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotech Lett 22(10):855–858. https://doi.org/10.1023/A:1005663313597

    Article  Google Scholar 

  17. Lee JM, Venditti RA, Jameel H, Kenealy WR (2011) Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenerg 35(1):626–636. https://doi.org/10.1016/j.biombioe.2010.10.021

    Article  CAS  Google Scholar 

  18. Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Biores Technol 102(2):1254–1263. https://doi.org/10.1016/j.biortech.2010.08.037

    Article  CAS  Google Scholar 

  19. Deng F, Cheong D-Y, Aita GM (2018) Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. Ind Crops Prod 115:166–173. https://doi.org/10.1016/j.indcrop.2018.02.030

    Article  CAS  Google Scholar 

  20. Eryasar-Orer K, Karasu-Yalcin S (2021) Optimization of activated charcoal detoxification and concentration of chestnut shell hydrolysate for xylitol production. Biotech Lett 43(6):1195–1209. https://doi.org/10.1007/s10529-021-03087-0

    Article  CAS  Google Scholar 

  21. Dhiman S, Mukherjee G (2018) Recent advances and industrial applications of microbial xylanases: a review. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer, pp 329–348

    Chapter  Google Scholar 

  22. Liu T, Zhang J (2018) High-level expression and characterization of Aspergillus niger ATCC 1015 xylanase B in Komagataella phaffii. Appl Biol Chem 61(4):373–381. https://doi.org/10.1007/s13765-018-0368-2

    Article  Google Scholar 

  23. Feng HJB, Jianguo Z (2018) Optimization of wheat bran acid pretreatment by response surface methodology. Chinese J Bioproc Eng 16(4):65–71

    Google Scholar 

  24. Dong J-J, Han R-Z, Xu G-C, Gong L, Xing W-R, Ni Y (2018) Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Biores Technol 259:40–45. https://doi.org/10.1016/j.biortech.2018.02.098

    Article  CAS  Google Scholar 

  25. Mendez AJ, Cabeza C, Hsia SL (1986) A fluorometric method for the determination of triglycerides in nanomolar quantities. Anal Biochem 156(2):386–389. https://doi.org/10.1016/0003-2697(86)90269-1

    Article  CAS  PubMed  Google Scholar 

  26. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  27. Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ (2014) Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 14(1):22. https://doi.org/10.1186/1472-6750-14-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708. https://doi.org/10.1007/s002530000328

    Article  CAS  PubMed  Google Scholar 

  29. Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638. https://doi.org/10.1007/s00253-009-1875-1

    Article  CAS  PubMed  Google Scholar 

  30. Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, Wu XL, Akamatsu T, Taguchi H, Kida K (2016) Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Appl Microbiol Biotechnol 100(3):1531–1542. https://doi.org/10.1007/s00253-015-7167-z

    Article  CAS  PubMed  Google Scholar 

  31. Paes BG, Steindorff AS, Formighieri EF, Pereira IS, Almeida JRM (2021) Physiological characterization and transcriptome analysis of Pichia pastoris reveals its response to lignocellulose-derived inhibitors. AMB Exp. https://doi.org/10.1186/s13568-020-01170-9

    Article  Google Scholar 

  32. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74(1):25–33. https://doi.org/10.1016/S0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  33. Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1(6):497–506. https://doi.org/10.1111/j.1751-7915.2008.00050.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feron VJ, Til HP, de Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ (1991) Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 259(3–4):363–385. https://doi.org/10.1016/0165-1218(91)90128-9

    Article  CAS  PubMed  Google Scholar 

  35. Lu Z-Y, Zhong J-J (2020) Effect of furfural addition on validamycin-A production in fermentation of Streptomyces hygroscopicus 5008. Process Biochem 92:43–48. https://doi.org/10.1016/j.procbio.2020.03.002

    Article  CAS  Google Scholar 

  36. Yi X, Lin L, Mei J, Wang W (2021) Transporter proteins in Zymomonas mobilis contribute to the tolerance of lignocellulose-derived phenolic aldehyde inhibitors. Bioprocess Biosyst Eng 44(9):1875–1882. https://doi.org/10.1007/s00449-021-02567-x

    Article  CAS  PubMed  Google Scholar 

  37. Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363(Pt 3):769–776. https://doi.org/10.1042/0264-6021:3630769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11(4):226–228. https://doi.org/10.1007/BF00505872

    Article  CAS  Google Scholar 

  39. Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461. https://doi.org/10.1146/annurev.micro.54.1.439

    Article  CAS  PubMed  Google Scholar 

  40. Grant CM, Collinson LP, Roe J-H, Dawes IW (1996) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21(1):171–179. https://doi.org/10.1046/j.1365-2958.1996.6351340.x

    Article  CAS  PubMed  Google Scholar 

  41. Sigler K, Chaloupka J, Brozmanová J, Stadler N, Höfer M (1999) Oxidative stress in microorganisms—I. Folia Microbiol 44(6):587–624. https://doi.org/10.1007/BF02825650

    Article  CAS  Google Scholar 

  42. Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73(1):27–36. https://doi.org/10.1007/s00253-006-0567-3

    Article  CAS  PubMed  Google Scholar 

  43. Probst KV, Vadlani PV (2015) Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products. Biores Technol 198:268–275. https://doi.org/10.1016/j.biortech.2015.09.018

    Article  CAS  Google Scholar 

  44. Millati R, Niklasson C, Taherzadeh MJ (2002) Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Process Biochem 38(4):515–522. https://doi.org/10.1016/S0032-9592(02)00176-0

    Article  CAS  Google Scholar 

  45. Arminda M, Josúe C, Cristina D, Fabiana S, Yolanda M (2021) Use of activated carbons for detoxification of a lignocellulosic hydrolysate: Statistical optimisation. J Environ Manag 296:113320. https://doi.org/10.1016/j.jenvman.2021.113320

    Article  CAS  Google Scholar 

  46. Zhang J, Zhao Y, Li M, Liu T (2019) Optimization of defined medium for recombinant Komagataella phaffii expressing cyclodextrin glycosyltransferase. Biotechnol Prog 35(5):e2867. https://doi.org/10.1002/btpr.2867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (No. 31870045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhang.

Ethics declarations

Conflict of interest

All authors declare they have no other competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhou, H. & Zhang, J. Development of wheat bran hydrolysate as Komagataella phaffii medium for heterologous protein production. Bioprocess Biosyst Eng 44, 2645–2654 (2021). https://doi.org/10.1007/s00449-021-02633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02633-4

Keywords

Navigation