Skip to main content
Log in

Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Despite the advantages of concrete, it has a pore structure and is susceptible to cracking. The initiated cracks as well as pores and their connectivity accelerate the structure degradation by permitting aggressive substances to flow into the concrete matrix. This phenomenon results in a considerable repair and maintenance costs and decreases the concrete lifespan. In recent years, biotechnological approach through immobilization of bacteria in/or protective vehicles has emerged as a viable solution to address this issue. However, the addition of macro- or micro scale size particles can decrease the integrity of matrix. In this study, the immobilization of bacteria with magnetic iron oxide nanoparticle (ION) was proposed to protect the bacterial cell and evaluate their effect on healing the concrete pore space. The results show that the addition of immobilized bacteria with IONs resulted in a lower water absorption and volume of permeable pore space. Crystal analysis using scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) revealed that CaCO3 was precipitated in bio-concrete specimen as a result of microbial biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166

    Article  CAS  Google Scholar 

  2. Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33:763–770

    Article  CAS  Google Scholar 

  3. Joseph C, Jefferson A, Cantoni M (2007) Issues relating to the autonomic healing of cementitious materials. In: First international conference on self-healing materials pp1-8 April 2007, Noordwijk aan Zee, The Netherlands

  4. Thao TDP, Johnson TJS, Tong QS, Dai PS (2009) Implementation of self-healing in concrete–proof of concept. IES J Part A Civ Struct Eng 2:116–125

    Article  Google Scholar 

  5. Dry C, McMillan W (1996) Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater Struct 5:297

    Article  CAS  Google Scholar 

  6. Dry CM (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem Concr Res 30:1969–1977

    Article  CAS  Google Scholar 

  7. Huang H, Ye G, Leung C, Wan K (2011) Application of sodium silicate solution as self-healing agent in cementitious materials. In: International RILEM conference on advances in construction materials through science and engineering. RILEM Publications SARL: Hong Kong, China, pp 530–536

  8. Seifan M, Samani AK, Burgess JJ, Berenjian A (2016) The effectiveness of microbial crack treatment in self healing concrete. In: Berenjian A, Jafarizadeh-Malmiri H, Song Y (eds) High Value Processing Technologies. Nova Science Publishers, Inc., New York

    Google Scholar 

  9. Wang JY, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152

    Article  CAS  Google Scholar 

  10. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Van Tittelboom K, De Belie N, Verstraete W (2012) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26:532–540

    Article  Google Scholar 

  12. Wang JY, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577

    Article  CAS  PubMed  Google Scholar 

  13. Wang JY, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110–119

    Article  Google Scholar 

  14. Land G, Stephan D (2015) Controlling cement hydration with nanoparticles. Cem Concr Compos 57:64–67

    Article  CAS  Google Scholar 

  15. Chen J, Kou S-c, Poon C-s (2012) Hydration and properties of nano-TiO2 blended cement composites. Cem Concr Compos 34:642–649

    Article  CAS  Google Scholar 

  16. Sato T, Beaudoin J (2011) Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Adv Cement Res 23:33–43

    Article  CAS  Google Scholar 

  17. Oltulu M, Şahin R (2013) Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: a comparative study. Energy Build 58:292–301

    Article  Google Scholar 

  18. Ji T (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem Concr Res 35:1943–1947

    Article  CAS  Google Scholar 

  19. Seifan M, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2018) Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl Microbiol Biotechnol 102:175–184

    Article  CAS  PubMed  Google Scholar 

  20. Seifan M, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2018) The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Appl Microbiol Biotechnol 102:3595–3606

    Article  CAS  PubMed  Google Scholar 

  21. Seifan M, Samani AK, Berenjian A (2016) Induced calcium carbonate precipitation using Bacillus species. Appl Microbiol Biotechnol 100:9895–9906

    Article  CAS  PubMed  Google Scholar 

  22. Seifan M, Samani AK, Berenjian A (2017) New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl Microbiol Biotechnol 101:3131–3142

    Article  CAS  PubMed  Google Scholar 

  23. Seifan M, Samani AK, Berenjian A (2017) A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatal Agri Biotechnol 12:299–307

    Article  Google Scholar 

  24. Seifan M, Samani AK, Hewitt S, Berenjian A (2017) The effect of cell immobilization by calcium alginate on bacterially induced calcium carbonate precipitation. Fermentation 3:57

    Article  CAS  Google Scholar 

  25. Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y (2012) Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci 8:868–874

    Article  CAS  Google Scholar 

  26. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). B Kor Chem Soc 33:3957–3962

    Article  CAS  Google Scholar 

  27. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539

    Article  CAS  Google Scholar 

  28. Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem 62:231–240

    Article  CAS  Google Scholar 

  29. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seifan M, Sarmah AK, Samani AK, Ebrahiminezhad A, Ghasemi Y, Berenjian A (2018) Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles. Appl Microbiol Biotechnol 102:4489–4498

    Article  CAS  PubMed  Google Scholar 

  31. ASTM C642-97 (1997) Standard test method for density, absorption, and voids in hardened concrete. American Society of Testing Materials. ASTM International, West Conshohocken

    Google Scholar 

  32. Ebrahiminezhad A, Taghizadeh S, Ghasemi Y, Berenjian A (2018) Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci Total Environ 621:1527–1532

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24:2060–2071

    Article  Google Scholar 

  34. Jo BW, Kim CH, Tae GH, Park JB (2007) Characteristics of cement mortar with nano-SiO2 particles. Const Build Mater 21:1351–1355

    Article  Google Scholar 

  35. Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21:539–545

    Article  Google Scholar 

  36. Jayapalan A, Lee B, Fredrich S, Kurtis K (2010) Influence of additions of anatase TiO2 nanoparticles on early-age properties of cement-based materials. Transp Res Rec 41–46

  37. Li H, Zhang Mh, Ou Jp (2006) Abrasion resistance of concrete containing nano-particles for pavement. Wear 260:1262–1266

    Article  CAS  Google Scholar 

  38. Sato T, Diallo F (2010) Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp Res Rec 61–67

  39. Li H, Xiao HG, Ou JP (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 34:435–438

    Article  CAS  Google Scholar 

  40. Li Z, Wang H, He S, Lu Y, Wang M (2006) Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett 60:356–359

    Article  CAS  Google Scholar 

  41. Chang T-P, Shih J-Y, Yang K-M, Hsiao T-C (2007) Material properties of Portland cement paste with nano-montmorillonite. J Mater Sci 42:7478–7487

    Article  CAS  Google Scholar 

  42. Phoo-ngernkham T, Chindaprasirt P, Sata V, Hanjitsuwan S, Hatanaka S (2014) The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Design 55:58–65

    Article  CAS  Google Scholar 

  43. Nazari A, Riahi S, Riahi S, Shamekhi SF, Khademno A (2010) Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci 6:6–9

    Google Scholar 

  44. Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A (2015) Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: a step towards process intensification. Nanomaterials 6:1–9

    Article  CAS  PubMed Central  Google Scholar 

  45. Ebrahiminezhad A, Bagheri M, Taghizadeh SM, Berenjian A, Ghasemi Y (2016) Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci-Nanosci 7

  46. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  47. Assa F, Jafarizadeh-Malmiri H, Ajamein H, Anarjan N, Vaghari H, Sayyar Z, Berenjian A (2016) A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res 9:2203–2225

    Article  CAS  Google Scholar 

  48. Seifan M, Sarmah K, Ebrahiminezhad A, Ghasemi A, Samani Y, Berenjian AK A (2018) Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles. Appl Microbiol Biotechnol 102:2167–2178

    Article  CAS  PubMed  Google Scholar 

  49. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293

    Article  CAS  Google Scholar 

  50. Levy L, Sahoo Y, Kim KS, Bergey EJ, Prasad PN (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem Mater 14:3715–3721

    Article  CAS  Google Scholar 

  51. Wang J, Deng T, Dai Y (2005) Study on the processes and mechanism of the formation of Fe3O4 at low temperature. J Alloys Compd 390:127–132

    Article  CAS  Google Scholar 

  52. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Ab Rahman MZ, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341

    Article  CAS  PubMed  Google Scholar 

  54. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17:305–318

    Article  CAS  Google Scholar 

  55. Panda R, Gajbhiye N, Balaji G (2001) Magnetic properties of interacting single domain Fe3O4 particles. J Alloys Compd 326:50–53

    Article  CAS  Google Scholar 

  56. Goya G, Berquo T, Fonseca F, Morales M (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528

    Article  CAS  Google Scholar 

  57. de Montferrand C, Hu L, Milosevic I, Russier V, Bonnin D, Motte L, Brioude A, Lalatonne Y (2013) Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater 9:6150–6157

    Article  CAS  PubMed  Google Scholar 

  58. Peternele WS, Fuentes VM, Fascineli ML, Silva JRd, Silva RC, Lucci CM, Azevedo RBd (2014) Experimental investigation of the coprecipitation method: an approach to obtain magnetite and maghemite nanoparticles with improved properties. J Nanomater 94

  59. Ebrahiminezhad A, Varma V, Yang S, Berenjian A (2016) Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol 100:173–180

    Article  CAS  PubMed  Google Scholar 

  60. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    Article  CAS  Google Scholar 

  61. Castro J, Bentz D, Weiss J (2011) Effect of sample conditioning on the water absorption of concrete. Cem Concr Compos 33:805–813

    Article  CAS  Google Scholar 

  62. Burne RA, Chen YYM (2000) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542

    Article  CAS  PubMed  Google Scholar 

  63. Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100:2591–2602

    Article  CAS  PubMed  Google Scholar 

  64. Kim HK, Park SJ, Han JI, Lee HK (2013) Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr Build Mater 38:1073–1082

    Article  CAS  Google Scholar 

  65. Wang J, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014) X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem Concr Compos 53:289–304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was financially supported by The University of Waikato, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Berenjian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifan, M., Ebrahiminezhad, A., Ghasemi, Y. et al. Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach. Bioprocess Biosyst Eng 42, 37–46 (2019). https://doi.org/10.1007/s00449-018-2011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2011-3

Keywords

Navigation