Skip to main content
Log in

Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present study, Trichoderma reesei cellulase was covalently immobilized on chitosan-coated magnetic nanoparticles using glutaraldehyde as a coupling agent. The average diameter of magnetic nanoparticles before and after enzyme immobilization was about 8 and 10 nm, respectively. The immobilized enzyme retained about 37 % of its initial activity, and also showed better thermal and storage stability than free enzyme. Immobilized cellulase retained about 80 % of its activity after 15 cycles of carboxymethylcellulose hydrolysis and was easily separated with the application of an external magnetic field. However, in this reaction, K m was increased eight times. The immobilized enzyme was able to hydrolyze lignocellulosic material from Agave atrovirens leaves with yield close to the amount detected with free enzyme and it was re-used in vegetal material conversion up to four cycles with 50 % of activity decrease. This provides an opportunity to reduce the enzyme consumption during lignocellulosic material saccharification for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li C, Yoshimoto M, Fukunaga K, Nakao K (2007) Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresour Technol 98:1366–1372

    Article  CAS  Google Scholar 

  2. Ungurean M, Paul C, Peter F (2013) Cellulase immobilized by sol–gel entrapment for efficient hydrolysis of cellulose. Bioprocess Biosyst Eng 36:1327–1338

    Article  CAS  Google Scholar 

  3. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  4. Gokhale AA, Lee I (2012) Cellulase immobilized nanostructured supports for efficient saccharification of cellulosic substrates. Top Catal 55:1231–1246. doi:10.1007/s11244-012-9891-2

    Article  CAS  Google Scholar 

  5. Sánchez-Ramírez J, Iliná A, Segura-Ceniceros EP, Aguilar CN, Medina-Morales MA, Martínez-Hernández JL (2014) Influencia de pretratamientos en la bioconversión enzimática de fibras de pencas de Agave. Rev Fac Nac Agron 67(2):915–916

    Google Scholar 

  6. Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171(2):669–673

    Article  CAS  Google Scholar 

  7. Cheng C, Chang KC (2013) Development of immobilized cellulase through functionalized gold nano-particles for glucose production by continuous hydrolysis of waste bamboo chopsticks. Enzym Microb Technol 53:444–451

    Article  CAS  Google Scholar 

  8. Valenzuela R, Castro JF, Parra C, Baeza J, Durán N, Freer J (2012) β-Glucosidase immobilisation on synthetic superparamagnetic magnetite nanoparticles and their application in saccharification of wheat straw and Eucalyptus globulus pulps. J Exp Nanosci. doi:10.1080/17458080.2011.651167

    Google Scholar 

  9. Weiss N, Börjesson J, Pedersen SL, Meyer SA (2013) Enzymatic lignocellulose hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotechnol Biofuels. doi:10.1186/1754-6834-6-5

    Google Scholar 

  10. Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Patents Eng 2(3):195–200

    Article  CAS  Google Scholar 

  11. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9. doi:10.1007/s13205-012-0071-7

    Article  Google Scholar 

  12. Gregorio-Jáuregui KM, Rivera-Salinas JE, Saade-Caballero H, López-Campos RG, Martínez-Hernández JL, Ilina A (2012) In: Avalos F (ed) Química Hoy: tópicos selectos de investigación, UA de C, Coahuila, México

    Google Scholar 

  13. Afsahi B, Kazemi A, Kheirolomoom A, Nejati S (2007) Immobilization of cellulase enzyme on non-porous ultrafine silica particles. Sci Iran 14(4):379–383

    CAS  Google Scholar 

  14. Dinçer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45(1–2):10–14

    Article  Google Scholar 

  15. Daoud FBO, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloids Surf B 75:93–99

    Article  CAS  Google Scholar 

  16. Das S, Berke-Schlessel D, Hai-Feng J, McDonough J, Wei Y (2011) Enzimatic hydrolysis of biomass with recyclable use of cellobiase enzyme immobilized in sol–gel routed mesoporous silica. J Mol Catal B Enzym 70:49–54

    Article  CAS  Google Scholar 

  17. Abd RM, Nour AH (2012) Optimisation of immobilized cellulose onto carbon nanotubes using response surface methodology. Int J Phys Sci 7(5):841–849

    Google Scholar 

  18. Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros EP, Contreras- Esquivel JC, Medina-Morales MA, Aguilar CN, Iliná A (2014) Inmovilización de enzimas lignocelulolíticas en nanopartículas magnéticas. Quim Nova 37(3):504–512

    Article  Google Scholar 

  19. Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas ORT (2006) Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol 70(5):505–516

    Article  CAS  Google Scholar 

  20. Gubin SP, Koksharov Y, Khomutov GB (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489–520

    Article  CAS  Google Scholar 

  21. Gregorio-Jáuregui KM, Rivera-Salinas JE, Saade-Caballero H, López-Campos RG, Martínez-Hernández JL, Ilina A (2012) Las nanopartículas magnéticas y sus múltiples aplicaciones. In: Coahuila UAD (ed) Química Hoy, tópicos selectos de investigación. Coahuila, México

  22. Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 11(4):833–844

    Article  CAS  Google Scholar 

  23. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  CAS  Google Scholar 

  24. Xie T, Wang A, Huang L, Li H, Chen Z, Wang Q, Yin X (2009) Recent advances in the support and technology used in enzyme immobilization. Afr J Biotechnol 8(19):4724–4733

    CAS  Google Scholar 

  25. Bornscheuer UT (2003) Immobilizing enzymes: how to create more suitable biocatalysts. Angew Chem Int Ed 42(29):3336–3337

    Article  CAS  Google Scholar 

  26. Lu A, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  27. Liu X, Lei L, Li Y, Zhu H, Cui Y, Hu H (2011) Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase. Biochem Eng J 56(3):142–149

    Article  CAS  Google Scholar 

  28. Zhao F, Zhang B, Feng L (2012) Preparation and magnetic properties of magnetite nanoparticles. Mater Lett 68:112–114

    Article  CAS  Google Scholar 

  29. Netto CGC, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85:71–92

    Article  Google Scholar 

  30. Gao JH, Gu HW, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107

    Article  CAS  Google Scholar 

  31. Chang MY, Juang RS (2007) Use of chitosan-clay composite as immobilization support for improved activity and stability of β-glucosidase. Biochem Eng J 35:93–98

    Article  CAS  Google Scholar 

  32. Belessi V, Zboril R, Tucek J, Mashlan M, Tzitzios V, Petridis D (2008) Ferrofluids from magnetic-chitosan hybrids. Chem Mater 20(10):3298–3305

    Article  CAS  Google Scholar 

  33. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. In: Wood TM, Kellogg ST (eds) Methods in enzymology, vol 160. Academic Press Inc, London, pp 87–112

    Google Scholar 

  34. Rodrigues DS, Mendes AA, Adriano WS, Gonçalves LRB, Giordano RLC (2008) Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J Mol Catal B Enzym 51:100–109

    Article  CAS  Google Scholar 

  35. Liao H, Chen D, Yuan L, Zheng M, Zhu Y, Liua X (2010) Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr Polym 82(3):600–604

    Article  CAS  Google Scholar 

  36. Jordan J, Kumar CSS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68(2):139–146

    Article  CAS  Google Scholar 

  37. Jordan J, Theegala C (2014) Probing the limitations for recycling cellulase enzymes immobilized on iron oxide (Fe3O4) nanoparticles. Biomass Convers Biorefin 4(1):25–33. doi:10.1007/s13399-013-0089-z

    Article  CAS  Google Scholar 

  38. Xu J, Huo S, Yuan Z, Zhang Y, Xu H, Guo Y, Liang C, Zhuang X (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal Biotransform 29(2–3):71–76

    Article  CAS  Google Scholar 

  39. Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE, Hurtado G, Saade H, Martinez JL, Ilyina A, López RG (2012) One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater 2012. doi:10.1155/2012/813958

  40. Osuna Y, Gregorio-Jauregui KM, Gaona LG, De la Garza RIM, Ilina A, Barriga CED, Saade H, Lopez RG (2012) Chitosan-coated magnetic nanoparticles with low chitosan content prepared in one-step. J Nanomater 2012. doi:10.1155/2012/327562

  41. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  42. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  Google Scholar 

  43. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  44. Ghose TK (1987) Measurement of cellulose activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  45. Camassola M, Dillon A (2012) Cellulase determination: modifications to make the filter paper assay easy, fast, practical and efficient. J Anal Bioanal Tech 1(S1). doi:10.4172/scientificreports.125

  46. Vattem DA, Shetty K (2003) Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid state system. Process Biochem 39:367–379

    Article  CAS  Google Scholar 

  47. Li A, Antizar-Ladislao B, Khraisheh M (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30(3):189–196. doi:10.1007/s00449-007-0114-3

    Article  Google Scholar 

  48. Gregorio-Jauregui K, Carrizalez-Alvarez S, Rivera-Salinas J, Saade H, Martinez J, López R, Segura E, Ilyina A (2014) Extraction and immobilization of SA-α-2,6-Gal receptors on magnetic nanoparticles to study receptor stability and inter action with sambucus nigra lectin. Appl Biochem Biotechnol 172(8):3721–3735

    Article  CAS  Google Scholar 

  49. Kuo C-H, Liu Y-C, Chang C-MJ, Chen J-H, Chang C, Shieh C-J (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87:2538–2545

    Article  CAS  Google Scholar 

  50. Pariona N, Camacho-Aguilar KI, Ramos-González R, Martinez AI, Herrera-Trejo M, Baggio-Saitovitch E (2016) Magnetic and structural properties of ferrihydrite/hematite nanocomposites. J Magn Magn Mater 406:221–227. doi:10.1016/j.jmmm.2016.01.001

    Article  CAS  Google Scholar 

  51. Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306(2):223–227. doi:10.1016/j.jmmm.2006.01.250

    Article  CAS  Google Scholar 

  52. G-y Li, Y-r Jiang, K-l Huang, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. J Alloys Compd 466(1–2):451–456. doi:10.1016/j.jallcom.2007.11.100

    Google Scholar 

  53. Arroyo M (1998) Inmovilización de enzimas. Fundamentos, métodos y aplicaciones. Ars Pharm 39(2):23–39

    Google Scholar 

  54. Hu J, Li S (2006) Propierties of immobilized pepsin on modified PMMA microspheres. Biotechnol J 1:75–77

    Article  CAS  Google Scholar 

  55. Sohn OJ, Kim CK, Rhee JI (2008) Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnol Bioprocess Eng 13:716–723. doi:10.1007/s12257-008-0096-2

    Article  CAS  Google Scholar 

  56. Khan MJ, Husain Q, Azam A (2012) Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: applications to the hydrolysis of starch. Biotechnol Bioprocess Eng 17:377–384

    Article  CAS  Google Scholar 

  57. Magri ML, Miranda MV, Cascone O (2005) Immobilization of soybean seed coat peroxidase on polyaniline: synthesis optimization and catalytic properties. Biocatal Biotransform 23:339–346

    Article  CAS  Google Scholar 

  58. Alahakoon T, Koh WJ, Chong CWX, Lim LTW (2012) Immobilization of cellulases on amine and aldehyde functionalized Fe2O3 magnetic nanoparticles. Prep Biochem Biotechnol 42(3):234–248. doi:10.1080/10826068.2011.602800

    Article  CAS  Google Scholar 

  59. Liu J, Cao X (2014) Biodegradation of cellulose by β-glucosidase and cellulase immobilized on a pH-responsive copolymer. Biotechnol Bioprocess Eng 19:829–837. doi:10.1007/s12257-013-0716-3

    Article  CAS  Google Scholar 

  60. Alftrén J, Hobley T (2013) Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl Biochem Biotechnol 169:2076–2087. doi:10.1007/s12010-013-0122-5

    Article  Google Scholar 

  61. Lupoi SJ, Smith AE (2011) Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108(12):2835–2843

    Article  CAS  Google Scholar 

  62. Varavinit S, Chaokasem N, Shobsngob S (2002) Immobilization of a thermostable alpha-amylase. Sci Asia 28(3):247–251

    Article  CAS  Google Scholar 

  63. Alftrén J, Hobley TJ (2014) Immobilization of cellulases on magnetic particles to enable enzyme recycling during hydrolysis of lignocellulose. PhD Thesis. National Food Institute, Technical University of Denmark. www.biosustain.dtu.dk/…2014/Phd-afhandling_Johan_Alftrén.as. Accessed 21 April 2016

Download references

Acknowledgments

The work was financially supported by Grant (PDCPN2013-01) No. 213844 (CONACYT). We thank Mexican Council of Science and Technology (CONACYT) for Masters Scholarship and for the financial support under the program “Cátedras-CONACYT, 2015”, Grant No. 729.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ilyina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ramírez, J., Martínez-Hernández, J.L., Segura-Ceniceros, P. et al. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40, 9–22 (2017). https://doi.org/10.1007/s00449-016-1670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1670-1

Keywords

Navigation