Skip to main content

Advertisement

Log in

Whole cell bioconversion of vitamin D3 to calcitriol using Pseudonocardia sp. KCTC 1029BP

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Calcitriol is an important drug used for treating osteoporosis, which can be produced from vitamin D3. The current method of producing calcitriol from vitamin D3 during cultivation of microbial cells results in low yields of calcitriol and high purification costs. Therefore, in this study, the steps of cell cultivation and bioconversion of vitamin D3 to calcitriol were separated. Cells of Pseudonocardia sp. KCTC 1029BP were utilized as a whole cell catalyst to produce a high level and yield of calcitriol from vitamin D3. In addition, the effects of bioconversion buffers, cyclodextrins, and metal salts on the production of calcitriol were comparatively examined and selected for incorporation in the bioconversion medium, and their compositions were statistically optimized. The optimal bioconversion medium was determined as consisting of 15 mM Trizma base, 25 mM sodium succinate, 2 mM MgSO4, 0.08 % β-cyclodextrin, 0.1 % NaCl, 0.2 % K2HPO4, and 0.03 % MnCl2. Using this optimal bioconversion medium, 61.87 mg/L of calcitriol, corresponding to a 30.94 % mass yield from vitamin D3, was produced in a 75-L fermentor after 9 days. This calcitriol yield was 3.6 times higher than that obtained using a bioconversion medium lacking β-cyclodextrin, NaCl, K2HPO4, and MnCl2. In conclusion, utilizing whole cells of Pseudonocardia sp. KCTC 1029BP together with the optimal bioconversion medium markedly enhanced the production of calcitriol from vitamin D3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeLuca HF, Schnoes HK (1983) Vitamin D: recent advances. Annu Rev Biochem 52:411–439

    Article  CAS  Google Scholar 

  2. Madhok TC, DeLuca HF (1979) Characteristics of the rat liver microsomal enzyme system converting cholecalciferol into 25-hydroxycholecalciferol. Evidence for the participation of cytochrome p-450. Biochem J 184:491–499

    CAS  Google Scholar 

  3. Beckman MJ, DeLuca HF (2002) Regulation of renal vitamin D receptor is an important determinant of 1α,25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys 401:44–52

    Article  CAS  Google Scholar 

  4. Brenza HL, DeLuca HF (2000) Regulation of 25-hydroxyvitamin D3 1α-hydroxylase gene expression by parathyroid hormone and 1, 25-dihydroxyvitamin D3. Arch Biochem Biophys 381:143–152

    Article  CAS  Google Scholar 

  5. Ikekawa N (1987) Structures and biological activities of vitamin D metabolites and their analogs. Med Res Rev 7:333–366

    Article  CAS  Google Scholar 

  6. Kametani T, Furuyama H (1987) Synthesis of vitamin D3 and related compounds. Med Res Rev 7:147–171

    Article  CAS  Google Scholar 

  7. Lythgoe B (1980) Simonsen lecture. Synthetic approaches to vitamin D and its relatives. Chem Soc Rev 9:449–475

    Article  CAS  Google Scholar 

  8. Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D (2005) Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Hum Mol Genet 14:1515–1528

    Article  CAS  Google Scholar 

  9. Bjorkhem I, Holmberg I, Oftebro H, Pedersen JI (1980) Properties of a reconstituted vitamin D3 25-hydroxylase from rat liver mitochondria. J Biol Chem 255:5244–5249

    CAS  Google Scholar 

  10. Gray RW, Omdahl JL, Ghazarian JG, DeLuca HF (1972) 25-Hydroxycholecalciferol-1-hydroxylase. Subcellular location and properties. J Biol Chem 247:7528–7532

    CAS  Google Scholar 

  11. Hansson R, Holmberg I, Wikvall K (1981) 25-Hydroxylation of vitamin D3 and side chain hydroxylations of 5β-cholestane-3α, 7α, 12α-triol by purified rabbit and rat liver microsomal cytochromes P-450. J Biol Chem 256:4345–4349

    CAS  Google Scholar 

  12. Hiwatashi A, Ichikawa Y (1980) Purification and organ-specific properties of cholecalciferol 25-hydroxylase system: cytochrome P-450D25-linked mixed function oxidase system. Biochem Biophys Res Commun 97:1443–1449

    Article  CAS  Google Scholar 

  13. Hiwatashi A, Nishii Y, Ichikawa Y (1982) Purification of cytochrome P-450D1α(25-hydroxyvitamin D3-1α-hydroxylase) of bovine kidney mitochondria. Biochem Biophys Res Commun 105:320–327

    Article  CAS  Google Scholar 

  14. Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, Hamstra AJ, DeLuca HF (1978) Vitamin-D-dependent rickets type II: resistance of target organs to 1, 25-dihydroxyvitamin D. N Engl J Med 298:996–999

    Article  CAS  Google Scholar 

  15. Clements M, Johnson L, Fraser D (1987) A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 325:62–65

    Article  CAS  Google Scholar 

  16. Seino Y, Tanaka H, Yamaoka K, Yabuuchi H (1987) Circulating 1 alpha,25-dihydroxyvitamin D levels after a single dose of 1 alpha,25-dihydroxyvitamin D3 or 1 alpha-hydroxyvitamin D3 in normal men. Bone Miner 2:479–485

    CAS  Google Scholar 

  17. Sasaki J, Miyazaki A, Saito M, Adachi T, Mizoue K, Hanada K, Omura S (1992) Transformation of vitamin D3 to 1α, 25-dihydroxyvitamin D3 via 25-hydroxyvitamin D3 using Amycolata sp. strains. Appl Microbiol Biotechnol 38:152–157

    Article  CAS  Google Scholar 

  18. Andrews DR, Barton DH, Hesse RH, Pechet MM (1986) Synthesis of 25-hydroxy-and 1. alpha., 25-dihydroxy vitamin D3 from vitamin D2 (calciferol). J Org Chem 51:4819–4828

    Article  CAS  Google Scholar 

  19. Hatakeyama S, Sugawara K, Numata H, Takano S (1991) A novel convergent synthesis of (+)-1. alpha., 25-dihydroxyvitamin D3 using a chromium (II)-mediated coupling reaction. J Org Chem 56:461–463

    Article  CAS  Google Scholar 

  20. Vanmaele L, De Clercq P, Vandewalle M (1985) An efficient synthesis of 1α, 25-dihydroxy vitamin D3. Tetrahedron 41:141–144

    Article  CAS  Google Scholar 

  21. Sasaki J, Mikami A, Mizoue K, Omura S (1991) Transformation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by using Streptomyces sp. strains. Appl Environ Microbiol 57:2841–2846

    CAS  Google Scholar 

  22. Lau J, Tran C, Licari P, Galazzo J (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J Biotechnol 110:95–103

    Article  CAS  Google Scholar 

  23. Wang Z, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  CAS  Google Scholar 

  24. Flores ER, Pérez F, de la Torre M (1997) Scale-up of Bacillus thuringiensis fermentation based on oxygen transfer. J Ferment Bioeng 83:561–564

    Article  CAS  Google Scholar 

  25. Kulprecha S, Ueda T, Nihira T, Yoshida T, Taguchi H (1985) Optimum conditions for ursodeoxycholic acid production from lithocholic acid by Fusarium equiseti M41. Appl Environ Microbiol 49:338–344

    CAS  Google Scholar 

  26. Uzura A, Katsuragi T, Tani Y (2001) Conversion of various aromatic compounds by resting cells of Fusarium moniliforme strain MS31. J Biosci Bioeng 92:381–384

    Article  CAS  Google Scholar 

  27. Kang D, Lee H, Park J, Bang JS, Hong S, Kim T (2006) Optimization of culture conditions for the bioconversion of vitamin D3 to 1α, 25-dihydroxyvitamin D3 using Pseudonocardia autotrophica ID 9302. Biotechnol Bioprocess Eng 11:408–413

    Article  CAS  Google Scholar 

  28. Imoto N, Nishioka T, Tamura T (2011) Permeabilization induced by lipid II-targeting lantibiotic nisin and its effect on the bioconversion of vitamin D3 to 25-hydroxyvitamin D3 by Rhodococcus erythropolis. Biochem Biophys Res Commun 405:393–398

    Article  CAS  Google Scholar 

  29. Hayashi K, Yasuda K, Sugimoto H, Ikushiro S, Kamakura M, Kittaka A, Horst RL, Chen TC, Ohta M, Shiro Y (2010) Three step hydroxylation of vitamin D3 by a genetically engineered CYP105A1. FEBS J 277:3999–4009

    Article  CAS  Google Scholar 

  30. Yasutake Y, Nishioka T, Imoto N, Tamura T (2013) A single mutation at the ferredoxin binding site of P450 Vdh enables efficient biocatalytic production of 25 hydroxyvitamin D3. Chem Bio Chem 14:2284–2291

    Article  CAS  Google Scholar 

  31. Lund J, DeLuca HF (1966) Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. J Lipid Res 7:739–744

    CAS  Google Scholar 

  32. Bajaj IB, Saudagar PS, Singhal RS, Pandey A (2006) Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J Biosci Bioeng 102:150–156

    Article  CAS  Google Scholar 

  33. Ng I, Ye C, Zhang Z, Lu Y, Jing K (2014) Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess Biosyst Eng 37:415–423

    Article  CAS  Google Scholar 

  34. Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K (2004) Conversion of vitamin D3 to 1α, 25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun 320:156–164

    Article  CAS  Google Scholar 

  35. Gomori G (1955) Preparation of buffers for use in enzyme studies. Meth Enzymol 1:138–146

    CAS  Google Scholar 

  36. Peng Y, Demain A (1998) A new hydroxylase system in Actinomadura sp. cells converting compactin to pravastatin. J Ind Microbiol Biotechnol 20:373–375

    Article  CAS  Google Scholar 

  37. Takeda K, Asou T, Matsuda A, Kimura K, Okamura K, Okamoto R, Sasaki J, Adachi T, Omura S (1994) Application of cyclodextrin to microbial transformation of vitamin Dto 25-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3. J Ferment Bioeng 78:380–382

    Article  CAS  Google Scholar 

  38. Jungmann V, Molnar I, Hammer PE, Hill DS, Zirkle R, Buckel TG, Buckel D, Ligon JM, Pachlatko JP (2005) Biocatalytic conversion of avermectin to 4″-oxo-avermectin: characterization of biocatalytically active bacterial strains and of cytochrome p450 monooxygenase enzymes and their genes. Appl Environ Microbiol 71:6968–6976

    Article  CAS  Google Scholar 

  39. Fujii Y, Kabumoto H, Nishimura K, Fujii T, Yanai S, Takeda K, Tamura N, Arisawa A, Tamura T (2009) Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem Biophys Res Commun 385:170–175

    Article  CAS  Google Scholar 

  40. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci USA 96:1863–1868

    Article  CAS  Google Scholar 

  41. Anderson MJ, Whitcomb PJ (2005) RSM simplified: optimizing processes using response surface methods for design of experiments. Productivity Press, Boca Raton

    Google Scholar 

  42. Mandenius C, Brundin A (2008) Bioprocess optimization using design of experiments methodology. Biotechnol Prog 24:1191–1203

    Article  CAS  Google Scholar 

  43. Raissi S, Farsani R (2009) Statistical process optimization through multi-response surface methodology. World Acad Sci Eng Technol 51:267–271

    Google Scholar 

  44. Hirsch AL (2011) Industrial aspects of vitamin D. In: Feldman D, Pike JW, Adams JS (eds) Vitamin D: two-volume set, 3rd edn. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

KHK acknowledges the grant support from the Advanced Biomass R&D Center of Korea (2011-0031353) funded by the Korean Government (MSIP) and the facility support at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, DJ., Im, JH., Kang, JH. et al. Whole cell bioconversion of vitamin D3 to calcitriol using Pseudonocardia sp. KCTC 1029BP. Bioprocess Biosyst Eng 38, 1281–1290 (2015). https://doi.org/10.1007/s00449-015-1368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1368-9

Keywords

Navigation