Skip to main content
Log in

Bench scale synthesis of p-hydroxybenzoic acid using whole-cell nitrilase of Gordonia terrae mutant E9

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Mutants of Gordonia terrae were generated using chemical mutagens for better activity, stability and higher substrate/product tolerance of its nitrilase enzyme. Mutant E9 showed two-time increase in activity and tolerated p-hydroxybenzonitrile (p-HBN) up to 50 mM. Response surface methodology and inducer mediation approach further enhanced the production of enzyme to 2.5-fold. The bench scale production of p-hydroxybenzoic acid (p-HBA) was carried out in a fed-batch reaction (500-mL scale) using whole-cell nitrilase of mutant E9 in 0.1 M potassium phosphate buffer (pH 8.0) at 40 °C. Total six feedings each at an interval of 45 min resulted in accumulation of 360 mM (21.6 g) of p-HBA with a purity of 99 %. The catalytic and volumetric productivity of bioprocess using mutant G. terrae was improved to 1.8 g h−1 g −1DCW and 43.2 g L−1, respectively, from 0.78 g h−1 g −1DCW and 28.8 g L−1 using resting cells of wild strain. K m and V max of purified nitrilase from mutant E9 were 55 U mg−1 and 1.8 mM for p-HBN with a higher turnover number of 36 s−1 × 10−3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EMS:

Ethyl methane sulphonate

MMS:

Methyl methane sulphonate

ENU:

Ethyl nitroso urea

MNU:

Methyl nitroso urea

p-HBN:

p-Hydroxybenzonitrile

p-HBA:

p-Hydroxybenzoic acid

RSM:

Response surface methodology

References

  1. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727

    Article  CAS  Google Scholar 

  2. Martinkova L, Kren V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  CAS  Google Scholar 

  3. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142–148

    Article  CAS  Google Scholar 

  4. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2012) An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of α-hydroxyisobutyric acid. Bioprocess Biosyst Eng 36:613–625

    Article  Google Scholar 

  5. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 98:83–94

    Article  Google Scholar 

  6. Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG (2014) Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(−)-mandelic acid. J Agric Food Chem 62:4685–4694

    Article  CAS  Google Scholar 

  7. Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D (2013) Efficient production of (R)-(−)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol 167:433–440

    Article  CAS  Google Scholar 

  8. Sharma NN, Monica S, Bhalla TC (2010) An improved nitrilasemediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  Google Scholar 

  9. Kumar V, Bhalla TC (2013) Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatal Biotransform 31:42–48

    Article  Google Scholar 

  10. Bhalla TC, Kumar V, Bhatia SK (2013) Hydroxy acids: production and applications. In: Singh RS, Pandey A, Larroche C (eds) Advances in Industrial Biotechnology. IK International Publishing House Pvt Ltd, India, pp 56–76

    Google Scholar 

  11. Rajagopal K, Agrawal SS (2011) Simultaneous estimation of p-hydroxybenzoic acid and its esters in wash-off/leave-on cosmetic products by high performance thin layer chromatography. Int J Pharma Stud Res 2:100–105

    Google Scholar 

  12. Rastogi SC, Schouten A, Kruijf N, Weijland JW (1995) Content of methyl, ethyl, propyl, butyl and benzylparaben in cosmetic products. Contact Dermat 32:28–30

    Article  CAS  Google Scholar 

  13. Soni MG (2005) Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol 43:985–1015

    Article  CAS  Google Scholar 

  14. Iijima T, Yamaguchi T (2007) The improved Kolbe-Schmitt reaction using supercritical carbon dioxide. Tetrahedron Lett 48:5309–5311

    Article  CAS  Google Scholar 

  15. Lindsey AS, Jeskey H (1957) The Kolbe-Schmitt reaction. Chem Rev 57:583–619

    Article  CAS  Google Scholar 

  16. Kirimura K, Gunji H, Wakayama R, Hattori T, Yoshitaka I (2010) Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase. Biochem Bioph Res 394:279–284

    Article  CAS  Google Scholar 

  17. Singh R, Sharma R, Tewari N, Geetanjali Rawat DS (2006) Nitrilase and its application as a ‘green’ catalyst. Chem Biodivers 12:1279–1287

    Article  Google Scholar 

  18. Morley LK, Kazlauskas JR (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23:231–237

    Article  CAS  Google Scholar 

  19. Parales RE, Ditty J (2005) Laboratory evolution of catabolic enzymes and pathways. Curr Opin Biotechnol 16:315–325

    Article  CAS  Google Scholar 

  20. Pratush A, Seth A, Bhalla TC (2010) Generation of mutant of R. rhodochrous PA-34 through chemical mutagenesis for hyperproduction of nitrile hydratase. Acta Microbiol Immunol Hung 57:135–146

    Article  CAS  Google Scholar 

  21. Sosedov O, Stolz A (2014) Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol 98:1595–1607

    Article  CAS  Google Scholar 

  22. Huimin Z, Karuppiah C, Zhilei C (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol 13:104–110

    Article  Google Scholar 

  23. Willium G, Shanabruch Robert PR, Irmgard B, Graham CW (1983) Mutagenesis, by methylating and ethylating agents, in mut H, mutL, mutS and uvrD mutants of Salmonella typhimurium LT2. J Bacteriol 153:33–34

    Google Scholar 

  24. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  Google Scholar 

  25. Zhou WW, He YL, Niu TG, Zhong JJ (2010) Optimization of fermentation conditions for production of anti-TMV extracellular ribonuclease by Bacillus cereus using response surface methodology. Bioprocess Biosyst Eng 33:657–663

    Article  CAS  Google Scholar 

  26. Kumar V, Seth A, Kumari V, Kumar V, Bhalla TC (2015) Purification, characterization and in silico analysis of nitrilase from Gordonia terrae. Protein Pept Lett 22:52–62

    Article  CAS  Google Scholar 

  27. Moturi B, Charya Singara MA (2010) Influence of physical and chemical mutagens on dye decolourising Mucor mucedo. Afr J Microbiol Res 17:1808–1813

    Google Scholar 

  28. Serrat X, Esteban R, Guibourt N, Moysset L, Nogues S, Lalanne E (2014) EMS mutagenesis in mature seed-derived rice callias a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10:5–18

    Article  Google Scholar 

  29. Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pep Sci 11:91–100

    Article  CAS  Google Scholar 

  30. Yeom SJ, Lee JK, Oh DK (2010) A positively charged amino acid at position 129 in nitrilase from Rhodococcus rhodochrous ATCC 33278 is an essential residue for the activity with meta-substituted benzonitriles. FEBS Lett 584:106–110

    Article  CAS  Google Scholar 

  31. Shen M, Zheng YG, Liu ZQ, Shen YC (2009) Production of acrylic acid from acrylonitrile by immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99. J Microbiol Biotechnol 19:582–587

    CAS  Google Scholar 

  32. Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R (2013) Enhancing nitrilase production from Fusarium proliferatum using response surface methodology. Springer Plus 2:290–297

    Article  Google Scholar 

  33. Banerjee A, Kaul P, Banerjee UC (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl Microbiol Biotechnol 72:77–87

    Article  CAS  Google Scholar 

  34. Harper DB (1984) Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) NCIB 11215, using p–hydroxybenzonitrile as sole carbon source. Int J Biochem 17:677–683

    Article  Google Scholar 

  35. O’ Reilly C, Turner PD (2003) The nitrilase family of CN hydrolyzing enzymes a comparative study. J Appl Microbiol 95:1161–1174

    Article  Google Scholar 

  36. Miller ES Jr, Peretti SW (2001) Toluene bioconversion to p-hydroxybenzoate by fed-batch cultures of recombinant Pseudomonas putida. Biotechnol Bioeng 77:340–351

    Article  Google Scholar 

  37. Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76:376–390

    Article  CAS  Google Scholar 

  38. Sachan A, Ghosh S, Mitra A (2010) Transforming p-coumaric acid into p-hydroxybenzoic acid by the mycelial culture of a white rot fungus Schizophyllum commune. Afr J Microbiol Res 4:267–273

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge University Grants Commission (UGC) New Delhi, India, for financial support in the form of SRF to Vijay Kumar and JRF to Virender Kumar. The computational facility availed at Bioinformatics Centre, HP University Shimla is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kumar, V., Thakur, N. et al. Bench scale synthesis of p-hydroxybenzoic acid using whole-cell nitrilase of Gordonia terrae mutant E9. Bioprocess Biosyst Eng 38, 1267–1279 (2015). https://doi.org/10.1007/s00449-015-1367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1367-x

Keywords

Navigation