Skip to main content

Advertisement

Log in

Bioreduction of U(VI) in groundwater under anoxic conditions from a decommissioned in situ leaching uranium mine

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To determine whether the U(VI) in groundwater under anoxic conditions at a decommissioned in situ leaching (ISL) uranium mine could be bioreduced, groundwater samples containing suspended sediments were taken from the mine, experimental setup was fabricated, and the jar containing the groundwater in the setup was amended with ethanol and incubated under anoxic conditions. The variations of pH, chemical oxygen demand, nitrate, sulfate, U(VI), and dissolved oxygen (DO) concentrations were monitored during the incubation. U(VI) concentration dropped to 0.043 mg/L when the stimulated microorganisms were active, and it then increased to 0.835 mg/L within 10 days after the metabolism of the stimulated microorganisms was inhibited. The DO variation was observed in the amended jar during the incubation, and the metabolism of the stimulated microorganisms was found to affect the DO concentration. Firmicutes were found to be dominant in the sediments in the amended jar through the 16S rRNA pyrosequencing. The results indicate that it is possible to bioreduce U(VI) in the groundwater under anoxic conditions at the decommissioned ISL uranium mine by adding carbon source into it without removing the oxygen from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor G, Farrington V, Woods P, Ring R, Molloy R (2004) Review of environmental impacts of the acid in situ leach uranium mining process. CSIRO Land and Water

  2. Osiensky JL, Williams RE (1990) Factors affecting efficient aquifer restoration at in situ uranium mine sites. Groundw Monit Rem 10:107–112

    Article  CAS  Google Scholar 

  3. Mudd GM (2001) Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environ Geol 41:390–403

    Article  CAS  Google Scholar 

  4. Mudd GM (2001) Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia. Environ Geol 41:404–416

    Article  CAS  Google Scholar 

  5. Vokál V, Mužák J, Ekert V (2013) Remediation of Uranium In-Situ Leaching Area at Stráž pod Ralskem, Czech Republic. In: Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management

  6. Lovley DR, Finneran KT, Anderson RT, Nevin KP (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11:339–357

    Article  Google Scholar 

  7. Gihring TM, Zhang G, Brandt CC, Brooks SC, Campbell JH, Carroll S, Criddle CS, Green SJ, Jardine P, Kostka JE, Lowe K, Mehlhorn TL, Overholt W, Watson DB, Yang Z, Wu WM, Schadt CW (2011) A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Appl Environ Microbiol 77:5955–5965

    Article  CAS  Google Scholar 

  8. Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995

    Article  CAS  Google Scholar 

  9. Watson DB, Wu W-M, Mehlhorn T, Tang G, Earles J, Lowe K, Gihring TM, Zhang G, Phillips J, Boyanov MI, Spalding BP, Schadt C, Kemner KM, Criddle CS, Jardine PM, Brooks SC (2013) In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. Environ Sci Technol 47:6440–6448

    CAS  Google Scholar 

  10. Moon HS, Komlos J, Jaffé PR (2007) Uranium reoxidation in previously bioreduced sediment by dissolved oxygen and nitrate. Environ Sci Technol 41:4587–4592

    Article  CAS  Google Scholar 

  11. Wu WM, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, J VN, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields MW, Gu B, Watson D, Kemner KM, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2007) In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723

    Article  CAS  Google Scholar 

  12. Abdelouas A, Lutze W, Gong W, Nuttall EH, Strietelmeier BA, Travis BJ (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci Total Environ 250:21–35

    Article  CAS  Google Scholar 

  13. Pham D, Bargar J, Janot N (2012) Determining the elemental composition of naturally reduced sediments at Old Rifle Aquifers. SLAC National Accelerator Laboratory, Menlo Park

    Google Scholar 

  14. Suvorova E, Williams K, Lezama-Pacheco JS, Blue LY, Cerrato J, Bernier-Latmani R, Giammar DE, Long PE (2011) Speciation of uranium in biologically reduced sediments in the Old Rifle Aquifer. In: American Chemical Society Annual Meeting: Denver, CO

  15. Qafoku NP, Kukkadapu RK, McKinley JP, Arey BW, Kelly SD, Wang C, Resch CT, Long PE (2009) Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment. Environ Sci Technol 43:8528–8534

    Article  CAS  Google Scholar 

  16. Davis JA, Curtis GP, Wilkins MJ, Kohler M, Fox P, Naftz DL, Lloyd JR (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys Chem Earth Parts A/B/C 31:548–555

    Article  Google Scholar 

  17. Campbell KM, Kukkadapu RK, Qafoku NP, Peacock AD, Lesher E, Williams KH, Bargar JR, Wilkins MJ, Figueroa L, Ranville J, Davis JA, Long PE (2012) Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Appl Geochem 27:1499–1511

    Article  CAS  Google Scholar 

  18. Banning A, Demmel T, Rüde TR, Wrobel M (2013) Groundwater uranium origin and fate control in a river valley aquifer. Environ Sci Technol 47:13941–13948

    Article  CAS  Google Scholar 

  19. Simoni SF, Harms H, Bosma TNP, Zehnder AJB (1998) Population heterogeneity affects transport of bacteria through sand columns at low flow rates. Environ Sci Technol 32:2100–2105

    Article  CAS  Google Scholar 

  20. Schäfer D, Schäfer W, Kinzelbach W (1998) Simulation of reactive processes related to biodegradation in aquifers: 2. Model application to a column study on organic carbon degradation. J Contam Hydrol 31:187–209

    Article  Google Scholar 

  21. Campbell KM, Veeramani H, Ulrich KU, Blue LY, Giammar DE, Bernier-Latmani R, Stubbs JE, Suvorova E, Yabusaki S, Lezama-Pacheco JS, Mehta A, Long PE, Bargar JR (2011) Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO. Environ Sci Technol 45:8748–8754

    Article  CAS  Google Scholar 

  22. Davis AC, Patterson BM, Grassi ME, Robertson BS, Prommer H, McKinley AJ (2007) Effects of increasing acidity on metal(loid) bioprecipitation in groundwater: column studies. Environ Sci Technol 41:7131–7137

    Article  CAS  Google Scholar 

  23. Gu B, Wu WM, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Fendorf S, Criddle CS, Jardine PM (2005) Bioreduction of uranium in a contaminated soil column. Environ Sci Technol 39:4841–4847

    Article  CAS  Google Scholar 

  24. Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729

    Article  CAS  Google Scholar 

  25. Converse BJ, Wu T, Findlay RH, Roden EE (2013) U(VI) Reduction in sulfate-reducing subsurface sediments amended with ethanol or acetate. Appl Environ Microbiol 79:4173–4177

    Article  CAS  Google Scholar 

  26. Luo W, Wu W-M, Yan T, Criddle C, Jardine P, Zhou J, Gu B (2007) Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Appl Microbiol Biotechnol 77:713–721

    Article  CAS  Google Scholar 

  27. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  CAS  Google Scholar 

  28. Boonchayaanant B, Kitanidis PK, Criddle CS (2008) Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: temperature effects. Biotechnol Bioeng 99:1107–1119

    Article  CAS  Google Scholar 

  29. Environmental Protection Administration of China (2006) Monitoring and analysis methods of water and wastewater, 4th edn. China Environmental Science Press, Beijing

    Google Scholar 

  30. Zhou P, Gu B (2005) Extraction of oxidized and reduced Forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environ Sci Technol 39:4435–4440

    Article  CAS  Google Scholar 

  31. Phillips EJP, Landa E, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207

    Article  CAS  Google Scholar 

  32. Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater. Appl Environ Microbiol 70:7558–7560

    Article  CAS  Google Scholar 

  33. N’Guessan AL, Vrionis HA, Resch CT, Long PE, Lovley DR (2008) Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. Environ Sci Technol 42:2999–3004

    Article  Google Scholar 

  34. Barton LL, Allan Hamilton e W (2007) Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Wu W-M, Gu B, Fields M, Gentile M, Ku Y-K, Yan H, Tiquias S, Yan T, Nyman J, Zhou J, Jardine P, Criddle C (2005) Uranium (VI) reduction by denitrifying biomass. Bioremediat J 9:49–61

    Article  CAS  Google Scholar 

  36. Atun G, Kilislioglu A (2002) The adsorption behavior of natural sand in contact with uranium contaminated seawater. J Environ Sci Health Part A Toxic/hazardous Subst Environ Eng 37:1295–1305

    Article  Google Scholar 

  37. Chapelle FH, Bradley PM, Thomas MA, McMahon PB (2009) Distinguishing iron-reducing from sulfate-reducing conditions. Ground Water 47:300–305

    Article  CAS  Google Scholar 

  38. Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2010) Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol 76:6778–6786

    Article  CAS  Google Scholar 

  39. Ryan JN, Elimelech M, Ard RA, Harvey RW, Johnson PR (1998) Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ Sci Technol 33:63–73

    Article  Google Scholar 

  40. Okabe S, Matsuda T, Satoh H, Itoh T, Watanabe Y (1998) Sulfate reduction and sulfide oxidation in aerobic mixed population biofilms. Water Sci Technol 37:131–138

    Article  CAS  Google Scholar 

  41. Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  Google Scholar 

  42. Gao W, Francis AJ (2008) Reduction of uranium(VI) to uranium(IV) by clostridia. Appl Environ Microbiol 74:4580–4584

    Article  CAS  Google Scholar 

  43. Sitte J, Akob DM, Kaufmann C, Finster K, Banerjee D, Burkhardt EM, Kostka JE, Scheinost AC, Buchel G, Kusel K (2010) Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Appl Environ Microbiol 76:3143–3152

    Article  CAS  Google Scholar 

  44. Sigalevich P, Meshorer E, Helman Y, Cohen Y (2000) Transition from Anaerobic to Aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation. Appl Environ Microbiol 66:5005–5012

    Article  CAS  Google Scholar 

  45. Mtimunye PJ, Chirwa EMN (2014) Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria. Chemosphere 113:22–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51274124) and the Development Program for Science and Technology for National Defense (B3720132001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-xin Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Dx., Li, Sm., Hu, N. et al. Bioreduction of U(VI) in groundwater under anoxic conditions from a decommissioned in situ leaching uranium mine . Bioprocess Biosyst Eng 38, 661–669 (2015). https://doi.org/10.1007/s00449-014-1305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1305-3

Keywords

Navigation