Skip to main content
Log in

Interactive impacts of a herbivore and a pathogen on two resistance types of Barbarea vulgaris (Brassicaceae)

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

It is well known that pathogens and arthropod herbivores attacking the same host plant may affect each other. Little is known, however, about their combined impact on plant fitness, which may differ from simple additive expectations. In a 2-year common garden field experiment, we tested whether the pathogen Albugo sp. (white blister rust) and the herbivorous flea beetle Phyllotreta nemorum affected each other’s performance on two resistance types (G-type and P-type) of the crucifer Barbarea vulgaris ssp. arcuata, and whether biomass, reproduction and survival of the plants were affected by interactive impacts of the antagonists. Most of the insect-resistant G-plants were severely affected by white rust, which reduced biomass and reproductive potential compared to the controls. However, when also exposed to flea beetles, biomass loss was mitigated in G-plants, even though apparent disease symptoms were not reduced. Most of the insect-susceptible P-plants were resistant to white rust; however, the number of flea beetle mines tended to increase in plants also exposed to Albugo, and biomass at the last harvest was slightly lower in the combined treatment. Thus, interactive impacts of the herbivore and pathogen differed between the two resistance types, with an antagonistic combined impact in G-plants, which lasted surprisingly long, and a slight synergistic impact in P-plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58:91–100. doi:10.1016/s0031-9422(01)00151-0

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK, Renwick JAA (2003a) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433. doi:10.1023/a:1024217504445

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, Ørgaard M, Nielsen JK (2003b) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80. doi:10.1016/s0031-9422(02)00750-1

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723. doi:10.1890/0012-9658(1999)080[1713:irthiw]2.0.co;2

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5:309–313. doi:10.1016/s1360-1385(00)01679-4

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (1980) Insect involvement in the transmission of fungal pathogens. In: Harris KF, Maramorosch K (eds) Vectors of plant pathogens. Academic Press, New York, pp 293–323

    Chapter  Google Scholar 

  • Arab A, Trigo JR (2011) Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore. J Chem Ecol 37:492–495. doi:10.1007/s10886-011-9955-y

    Article  CAS  PubMed  Google Scholar 

  • Augustin JM, Drok S, Shinoda T, Sanmiya K, Nielsen JK, Khakimov B, Olsen CE, Hansen EB, Kuzina V, Ekstrøm CT, Hauser T, Bak S (2012) UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol 160:1881–1895. doi:10.1104/pp.112.202747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin IT, Sims CL, Kean SE (1990) The reproductive consequences associated with inducible alkaloidal responses in wild tobaco. Ecology 71:252–262. doi:10.2307/1940264

    Article  CAS  Google Scholar 

  • Biere A, Bennett AE (2013) Three-way interactions between plants, microbes and insects. Funct Ecol 27:567–573. doi:10.1111/1365-2435.12100

    Article  Google Scholar 

  • Biere A, Marak HB, van Damme JMM (2004) Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs? Oecologia 140:430–441. doi:10.1007/s00442-004-1603-6

    Article  PubMed  Google Scholar 

  • Bostock RM, Karban R, Thaler JS, Weyman PD, Gilchrist D (2001) Signal interactions in induced resistance to pathogens and insect herbivores. Eur J Plant Pathol 107:103–111. doi:10.1023/a:1008703904253

    Article  CAS  Google Scholar 

  • Burdon JJ, Thrall PH (1999) Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat 153:S15–S33. doi:10.1086/303209

    Article  Google Scholar 

  • Choi Y-J, Shin H-D, Ploch S, Thines M (2011) Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biol 115:598–607. doi:10.1016/j.funbio.2011.02.006

  • Christensen S, Heimes C, Agerbirk N, Kuzina V, Olsen CE, Hauser TP (2014) Different geographical distributions of two chemotypes of Barbarea vulgaris that differ in resistance to insects and a pathogen. J Chem Ecol 40:491–501. doi:10.1007/s10886-014-0430-4

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216. doi:10.1016/s1360-1385(02)02244-6

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton U, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071. doi:10.1094/mpmi-19-1062

    Article  CAS  PubMed  Google Scholar 

  • Cripps MG, Bourdot GW, Saville DJ, Hinz HL, Fowler SV, Edwards GR (2011) Influence of insects and fungal pathogens on individual and population parameters of Cirsium arvense in its native and introduced ranges. Biol Invasions 13:2739–2754. doi:10.1007/s10530-011-9944-7

    Article  Google Scholar 

  • Dangl J, Holub E, Debener T, Lehnackers H, Ritter C, Crute I, Koncz C, Chua N, Schell J (1992) Genetic definition of loci involved in Arabidopsis–pathogen interactions. In: Koncz C, Chua NH, Schell J (eds) Methods in Arabidopsis research. World Scientific Publishing Co, Singapore, pp 393–418

    Google Scholar 

  • De Nooij MP, Biere A, Linders EGA (1992) Interaction of pests and pathogens through host predisposition. In: Ayres PG (ed) Pests and pathogens: plant responses to foliar attack. Bios Scientific, Oxford, pp 143–160

    Google Scholar 

  • Dickson TL, Mitchell CE (2010) Herbivore and fungal pathogen exclusion affects the seed production of four common grassland species. PLos One 5e12022. doi:10.1371/journal.pone.0012022

  • Erb M, Lenk C, Degenhardt J, Turlings TCJ (2009) The underestimated role of roots in defense against leaf attackers. Trends Plant Sci 14:653–659. doi:10.1016/j.tplants.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  • Farrar JF, Lewis DH (1987) Nutrient relations in biotrophic infections. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 92–132

    Google Scholar 

  • Fornoni J (2011) Ecological and evolutionary implications of plant tolerance to herbivory. Funct Ecol 25:399–407. doi:10.1111/j.1365-2435.2010.01805.x

    Article  Google Scholar 

  • Fournier V, Rosenheim JA, Brodeur J, Diez JM, Johnson MW (2006) Multiple plant exploiters on a shared host: testing for nonadditive effects on plant performance. Ecol Appl 16:2382–2398. doi:10.1890/1051-0761(2006)016[2382:mpeoas]2.0.co;2

  • Friedli J, Bacher S (2001) Mutualistic interaction between a weevil and a rust fungus, two parasites of the weed Cirsium arvense. Oecologia 129:571–576. doi:10.2307/4223121

    Article  CAS  PubMed  Google Scholar 

  • Fritz RS, Price PW (1988) Genetic variation among plants and insect community structure: willows and sawflies. Ecology 69:845–856. doi:10.2307/1941034

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  Google Scholar 

  • Hatcher PE (1995) Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol Rev 70:639–694. doi:10.1111/j.1469-185X.1995.tb01655.x

    Article  Google Scholar 

  • Hatcher PE, Paul ND, Ayres PG, Whittaker JB (1994) The effect of a foliar disease (rust) on the development of Gastrophysa viridula (Coleoptera: Chrysomelidae). Ecol Entomol 19:349–360. doi:10.1111/j.1365-2311.1994.tb00252.x

    Article  Google Scholar 

  • Hauser T, Toneatto F, Nielsen J (2012) Genetic and geographic structure of an insect resistant and a susceptible type of Barbarea vulgaris in western Europe. Evol Ecol 26:529–611

    Article  Google Scholar 

  • Hauser TP, Christensen S, Heimes C, Kiær LP (2013) Combined effects of arthropod herbivores and phytopathogens on plant performance. Funct Ecol 27:623–632. doi:10.1111/1365-2435.12053

    Article  Google Scholar 

  • Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20:1675–1688. doi:10.1111/j.1365-294X.2011.05026.x

    Article  CAS  PubMed  Google Scholar 

  • Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626. doi:10.1016/j.tree.2012.07.011

    Article  PubMed  Google Scholar 

  • Holland JN, Cheng WX, Crossley DA (1996) Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia 107:87–94. doi:10.1007/bf00582238

    Article  Google Scholar 

  • Karban R (1992) Plant variation: its effects on populations of herbivorous insects. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores. Ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 195–215

  • Karban R, Adamchak R, Schnathorst WC (1987) Induced resistance and interspecific competition between spider-mites and a vascular wilt fungus. Science 235:678–680. doi:10.1126/science.235.4789.678

    Article  CAS  PubMed  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2002) Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133:193–199. doi:10.1007/s00442-002-1016-3

    Article  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844. doi:10.1104/pp.107.112029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358–1368. doi:10.1104/pp.108.121392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Kuzina V, Ekstrøm CT, Andersen SB, Nielsen JK, Olsen CE, Bak S (2009) Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol 151:1977–1990. doi:10.1104/pp.109.136952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzina V, Nielsen JK, Augustin JM, Torp AM, Bak S, Andersen SB (2011) Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry 72:188–198. doi:10.1016/j.phytochem.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432. doi:10.1007/s00425-010-1265-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Wang L, Wang D, Bonser SP, Sun F, Zhou Y, Gao Y, Teng X (2012) Plants can benefit from herbivory: stimulatory effects of sheep saliva on growth of Leymus chinensis. PLos One 7e29259. doi:10.1371/journal.pone.0029259

  • Marquis RJ (1990) Genotypic variation in leaf damage in Piper arielianum (Piperaceae) by a multispecies assemblage of herbivores. Evolution 44:104–120. doi:10.2307/2409527

    Article  Google Scholar 

  • Marquis RJ (1992) Selective impact of herbivores. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores. Ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 301–325

  • Nielsen JK (1997) Variation in defences of the plant Barbarea vulgaris and in counter adaptations by the flea beetle Phyllotreta nemorum. Entomol Exp Appl 82:25–35. doi:10.1046/j.1570-7458.1997.00110.x

  • Nielsen JK, Nagao T, Okabe H, Shinoda T (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285

    Article  CAS  PubMed  Google Scholar 

  • Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566

  • Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Protect 23:275–285. doi:10.1016/j.cropro.2003.10.001

    Article  Google Scholar 

  • Olejniczak P (2011) Overcompensation in response to simulated herbivory in the perennial herb Sedum maximum. Plant Ecol 212:1927–1935. doi:10.1007/s11258-011-9985-0

    Article  Google Scholar 

  • Paul ND, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5:220–225. doi:10.1016/s1360-1385(00)01603-4

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ramsell J, Paul ND (1990) Preferential grazing by molluscs of plants infected by rust fungi. Oikos 58:145–150. doi:10.2307/3545421

    Article  Google Scholar 

  • Rayapuram C, Baldwin IT (2008) Host-plant-mediated effects of Na defensin on herbivore and pathogen resistance in Nicotiana attenuata. BMC Plant Biol 8:109. doi:10.1186/1471-2229-8-109

    Article  PubMed Central  PubMed  Google Scholar 

  • Redman AM, Cipollini DF, Schultz JC (2001) Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126:380–385. doi:10.1007/s004420000522

    Article  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Reudler JH, Honders SC, Turin H, Biere A (2013) Trade-offs between chemical defence and regrowth capacity in Plantago lanceolata. Evol Ecol 27:883–898. doi:10.1007/s10682-012-9609-8

    Article  Google Scholar 

  • Röder G, Rahier M, Naisbit RE (2007) Coping with an antagonist: the impact of a phytopathogenic fungus on the development and behaviour of two species of alpine leaf beetle. Oikos 116:1514–1523. doi:10.1111/j.0030-1299.2007.16057.x

    Article  Google Scholar 

  • Rostás M, Simon M, Hilker M (2003) Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic Appl Ecol 4:43–62. doi:10.1078/1439-1791-00132

    Article  Google Scholar 

  • Ruiz-R N, Ward D, Saltz D (2008) Leaf compensatory growth as a tolerance strategy to resist herbivory in Pancratium sickenbergeri. Plant Ecol 198:19–26. doi:10.1007/s11258-007-9381-y

    Article  Google Scholar 

  • Sciegienka JK, Keren EN, Menalled FD (2011) Interactions between two biological control agents and an herbicide for canada thistle (Cirsium arvense) suppression. Invasive Plant Sci Manag 4:151–158. doi:10.1614/ipsm-d-10-00061.1

    Article  CAS  Google Scholar 

  • Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M, Okabe H, Kawai A (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599. doi:10.1023/a:1014500330510

    Article  CAS  PubMed  Google Scholar 

  • Stout MJ, Thaler JS, Thomma BPHJ (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689. doi:10.1146/annurev.ento.51.110104.151117

    Article  CAS  PubMed  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185. doi:10.1016/s0169-5347(98)01576-6

    Article  PubMed  Google Scholar 

  • Tack AJM, Dicke M (2013) Plant pathogens structure arthropod communities across multiple spatial and temporal scales. Funct Ecol 27:633–645. doi:10.1111/1365-2435.12087

    Article  Google Scholar 

  • Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology 91:1075–1082. doi:10.1890/08-2347.1

    Article  PubMed  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270. doi:10.1016/j.tplants.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  • Toneatto F, Nielsen JK, Ørgaard M, Hauser TP (2010) Genetic and sexual separation between insect resistant and susceptible Barbarea vulgaris plants in Denmark. Mol Ecol 19:3456–3465. doi:10.1111/j.1365-294X.2010.04760.x

    Article  CAS  PubMed  Google Scholar 

  • Toneatto F, Hauser TP, Nielsen JK, Ørgaard M (2012) Genetic diversity and similarity in the Barbarea vulgaris complex (Brassicaceae). Nord J Bot 30:506–512

    Article  Google Scholar 

  • Trumble JT, Kolodnyhirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119. doi:10.1146/annurev.en.38.010193.000521

    Article  Google Scholar 

  • Turner PJ, Morin L, Williams DG, Kriticos DJ (2010) Interactions between a leafhopper and rust fungus on the invasive plant Asparagus asparagoides in Australia: a case of two agents being better than one for biological control. Biol Control 54:322–330. doi:10.1016/j.biocontrol.2010.06.005

    Article  Google Scholar 

  • van Mölken T, Kuzina V, Munk KR, Sundelin T, van Dam NM, Hauser TP (2014a) Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. Oecologia 175:589–600. doi:10.1007/s00442-014-2928-4

    Article  PubMed  Google Scholar 

  • van Mölken T, Heimes C, Hauser TP, Sundelin T (2014) Phylogeny of an Albugo sp. infecting Barbarea vulgaris in Denmark and its frequency of symptom development in natural populations of two evolutionary divergent plant types. Fungal Biol 118:340–347. doi:10.1016/j.funbio.2014.01.008

  • Verhoeven KJF, Gurpvan TP (2012) Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLos One 7e38605. doi:10.1371/journal.pone.0038605

  • Wei XC, Zhang XH, Shen D, Wang HP, Wu HP, Lu P, Qiu Y, Song JP, Zhang YJ, Li XX (2013) Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLos One 8. doi:10.1371/journal.pone.0064481

  • Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR (2012) Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol 193:770–778. doi:10.1111/j.1469-8137.2011.03987.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lubberstedt T, Xu ML (2013) The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40:23–35. doi:10.1016/j.jgg.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858. doi:10.1104/pp.107.112177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. K. Nørgaard for technical support during the experimental phase, L. Debaut-Henocque for help with practical work and J. K. Nielsen for scientific advice. We are grateful to S. Christensen, S. Enge and two anonymous reviewers for valuable comments on previous versions of the manuscript. The study was financially supported by a grant from the Danish Agency for Science, Technology and Innovation (grant no. 274-08-0462) and a PhD stipend to CH from the Faculty of Life Sciences, University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thure P. Hauser.

Additional information

Communicated by Corné Pieterse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimes, C., Thiele, J., van Mölken, T. et al. Interactive impacts of a herbivore and a pathogen on two resistance types of Barbarea vulgaris (Brassicaceae). Oecologia 177, 441–452 (2015). https://doi.org/10.1007/s00442-014-3113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3113-5

Keywords

Navigation