Skip to main content
Log in

The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The spider Cupiennius salei is a well-established model for investigating information processing in arthropod sensory systems. Immunohistochemistry has shown that several neurotransmitters exist in the C. salei nervous system, including GABA, glutamate, histamine, octopamine and FMRFamide, while electrophysiology has found functional roles for some of these transmitters. There is also evidence that acetylcholine (ACh) is present in some C. salei neurons but information about the distribution of cholinergic neurons in spider nervous systems is limited. Here, we identify C. salei genes that encode enzymes essential for cholinergic transmission: choline ACh transferase (ChAT) and vesicular ACh transporter (VAChT). We used in-situ hybridization with an mRNA probe for C. salei ChAT gene to locate somata of cholinergic neurons in the central nervous system and immunohistochemistry with antisera against ChAT and VAChT to locate these proteins in cholinergic neurons. All three markers labeled similar, mostly small neurons, plus a few mid-sized neurons, in most ganglia. In the subesophageal ganglia, labeled neurons are putative efferent, motor or interneurons but the largest motor and interneurons were unlabeled. Groups of anti-ChAT labeled small neurons also connect the optic neuropils in the spider protocerebrum. Differences in individual cell labeling intensities were common, suggesting a range of ACh expression levels. Double-labeling found a subpopulation of anti-VAChT-labeled central and mechanosensory neurons that were also immunoreactive to antiserum against FMRFamide-like peptides. Our findings suggest that ACh is an important neurotransmitter in the C. salei central and peripheral nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams ME, O’Shea M (1983) Peptide cotransmitter at a neuromuscular junction. Science 221:286–289

    Article  CAS  PubMed  Google Scholar 

  • Anton S, Barth FG (1993) Central nervous projection patterns of trichobothria and other cuticular sensilla in the wandering spider. Zoomorphology 113:21–32

    Article  Google Scholar 

  • Anton S, Tichy H (1994) Hygro- and thermoreceptors in tip-pore sensilla of the tarsal organ of the spider Cupiennius salei: innervation and central projection. Cell Tissue Res 278:399–407

    Google Scholar 

  • Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104:344–359

  • Babu KS, Barth FG (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei Keys. Cell Tissue Res 258:69–82

    Article  Google Scholar 

  • Babu KS, Barth FG, Strausfeld NJ (1985) Intersegmental sensory tracts and contralateral motor neurons in the leg ganglia of the spider Cupiennius salei Keys. Cell Tissue Res 241:53–57

    Article  Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Heidelberg

    Book  Google Scholar 

  • Barth FG (2004) Spider mechanoreceptors. Curr Opin Neurobiol 14:415–422

    Article  CAS  PubMed  Google Scholar 

  • Barth FG, Libera W (1970) Ein atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Aranea). Z Morphol Tiere 68:343–369

    Article  Google Scholar 

  • Becherer C, Schmid A (1999) Distribution of γ-aminobutyric acid-, proctolin-, Periplaneta hypertrehaloosaemic hormone- and FMRFamde-like immunoreactivity in the visual ganglia of the spider Cupiennius salei Keys. Comp Biochem Physiol a 122:267–275

    Article  Google Scholar 

  • Berg BG, Schachtner J, Homberg U (2009) γ-Aminobutyric acid immunostaining in the antennal lobe of the moth Heliothis virescens and its colocalization with neuropeptides. Cell Tissue Res 335:593–605

    Article  CAS  PubMed  Google Scholar 

  • Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429:523–530

    Article  CAS  PubMed  Google Scholar 

  • Brownlee D, Holden-Dye L, Walker R (2000) The range and biological activity of FMRFamide-related peptides and classical neurotransmitters in nematodes. Adv Parasitol 45:109–180

    Article  CAS  PubMed  Google Scholar 

  • Clark J, Meisner S, Torkkeli PH (2005) Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta. Cell Tissue Res 320:163–173

    Article  CAS  PubMed  Google Scholar 

  • El Mestikawy S, Wallen-Mackenzie A, Fortin GM, Descarries L, Trudeau LE (2011) From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 12:204–216

    Article  PubMed  Google Scholar 

  • Fabian R, Seyfarth E-A (1997) Acetylcholine and histamine are transmitter candidates in identifiable mechanosensitive neurons of the spider Cupiennius salei: an immunocytochemical study. Cell Tissue Res 287:413–423

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Volknandt W, Seyfarth E-A (1999a) Peripheral synapses at identifiable mechanosensory neurons in the spider Cupiennius salei: synapsin-like immunoreactivity. Cell Tissue Res 295:13–19

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Höger U, Seyfarth E-A, Meinertzhagen IA (1999b) Peripheral synapses at identified mechanosensory neurons in spiders: three-dimensional reconstruction and GABA-immunoreactivity. J Neurosci 19:298–310

    CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Meinertzhagen IA, Seyfarth E-A (2000) Organization of efferent peripheral synapses at mechanosensory neurons in spiders. J Comp Neurol 420:195–210

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Seyfarth E-A, Meinertzhagen IA (2002) Peripheral synaptic contacts at mechanoreceptors in arachnids and crustaceans: morphological and immunocytochemical characteristics. Microsc Res Tech 58:283–298

    Article  PubMed  Google Scholar 

  • Fabian-Fine R, Meisner S, Torkkeli PH, Meinertzhagen IA (2015) Co-localization of γ-aminobutyric acid and glutamate in neurons of the spider central nervous system. Cell Tissue Res 362:461–479

    Article  CAS  PubMed  Google Scholar 

  • French AS (2012) Transcriptome walking: a laboratory-oriented GUI-based approach to mRNA identification from deep-sequenced data. BMC Res Notes 5:673

    Article  PubMed  PubMed Central  Google Scholar 

  • French AS, Torkkeli PH, Seyfarth E-A (2002) From stress and strain to spikes: mechanotransduction in spider slit sensilla. J Comp Physiol A 188:739–752

    Article  CAS  Google Scholar 

  • French AS, Li AW, Meisner S, Torkkeli PH (2014) Upstream open reading frames and Kozak regions of assembled transcriptome sequences from the spider Cupiennius salei. Selection or chance? Gene 539:203–208

    Article  CAS  PubMed  Google Scholar 

  • Fusca D, Husch A, Baumann A, Kloppenburg P (2013) Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (Periplaneta americana). J Comp Neurol 521:3556–3569

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez R (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci 28:297–303

    Article  CAS  PubMed  Google Scholar 

  • Haunerland NH (1997) Transport and utilization of lipids in insect flight muscles. Comp Biochem Physiol B 117B:475–482

    Article  CAS  Google Scholar 

  • Hnasko TS, Edwards RH (2012) Neurotransmitter corelease: mechanism and physiological role. Annu Rev Physiol 74:225–243

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa T, Ajiki K, Matsuura J, Misawa H (1997) Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat 13:23–39

    Article  CAS  PubMed  Google Scholar 

  • Iwano M, Kanzaki R (2005) Immunocytochemical identification of neuroactive substances in the antennal lobe of the male silkworm moth Bombyx mori. Zool Sci 22:199–211

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1976) L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 262:215–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Muneoka Y (1989) Functions, receptors, and mechanisms of the FMRFamide-related peptides. Biol Bull 177:206–209

  • Kolodziejczyk A, Sun X, Meinertzhagen IA, Nässel DR (2008) Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS ONE 3:e2110

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin M (2004) A novel immunohistochemical method for evaluation of antibody specificity and detection of labile targets in biological tissue. J Biochem Biophys Methods 58:85–96

    Article  CAS  PubMed  Google Scholar 

  • Liu H, French AS, Torkkeli PH (2017) Expression of Cys-loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells and muscle tissue of the spider Cupiennius salei. J Comp Neurol 149:455–464

  • Loesel R, Seyfarth E-A, Bräunig P, Agricola HJ (2011) Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications. Arthropod Struct Dev 40:210–220

    Article  CAS  PubMed  Google Scholar 

  • Maier L, Root TM, Seyfarth E-A (1987) Heterogeneity of spider leg muscle: Histochemistry and electrophysiology of identified fibers in the claw levator. J Comp Physiol B 157:285–294

    Article  Google Scholar 

  • Meng X, Li C, Xiu C, Zhang J, Li J, Huang L, Zhang Y, Liu Z (2016) Identification and biochemical properties of two new acetylcholinesterases in the pond wolf spider (Pardosa pseudoannulata). PLoS ONE 11:e0158011

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercier AJ, Friedrich R, Boldt M (2003) Physiological functions of FMRFamide-like peptides (FLPs) in crustaceans. Microsc Res Tech 60:313–324

    Article  CAS  PubMed  Google Scholar 

  • Milde JJ, Seyfarth E-A (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol A 162:623–631

  • Gilmor ML, Nash NR, Roghani A, Edwards RH, Yi H, Hersch SM, Levey AI (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci 16:2179–2190

    CAS  PubMed  Google Scholar 

  • Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24

    Article  PubMed  Google Scholar 

  • Nichols R (2003) Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Annu Rev Entomol 48:485–503

    Article  CAS  PubMed  Google Scholar 

  • Osborne RH (1996) Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther 69:117–142

    Article  CAS  PubMed  Google Scholar 

  • Panek I, Torkkeli PH (2005) Inhibitory glutamate receptors in spider peripheral mechanosensory neurons. Eur J Neurosci 22:636–646

    Article  PubMed  Google Scholar 

  • Panek I, French AS, Seyfarth E-A, Sekizawa S-I, Torkkeli PH (2002) Peripheral GABAergic inhibition of spider mechanosensory afferents. Eur J Neurosci 16:96–104

    Article  PubMed  Google Scholar 

  • Persson MGS, Nässel DR (1999) Neuropeptides in insect sensory neurones: tachykinin-, FMRFamide- and allatotropin-related peptides in terminals of locust thoracic sensory afferents. Brain Res 816:131–141

    Article  CAS  PubMed  Google Scholar 

  • Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I (2014) The FMRFamide-like peptide family in nematodes. Front Endocrinol (Lausanne) 5:90. doi:10.3389/fendo.2014.00090 [Erratum (2015) 9:120]

    Google Scholar 

  • Pfeiffer K, Panek I, Höger U, French AS, Torkkeli PH (2009) Random stimulation of spider mechanosensory neurons reveals long-lasting excitation by GABA and muscimol. J Neurophysiol 101:54–66

    Article  CAS  PubMed  Google Scholar 

  • Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA (2013) Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J 450:265–274

    Article  CAS  PubMed  Google Scholar 

  • Ramirez M, Gutierrez R (2001) Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Res 917:139–146

  • Salio C, Lossi L, Ferrini F, Merighi A (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326:583–598

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Duncker M (1993) Histamine immunoreactivity in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 273:533–543

    Article  Google Scholar 

  • Seyfarth E-A, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HG (1993) Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611:197–206

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS, Dichter MA, Rachinsky TL, Dean E, Goodman JH, Sollas AL, Martin DL (1996) Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J Comp Neurol 373:593–618

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi A, Takeuchi N (1964) The effect on crayfish muscle of iontophortically applied glutamate. J Physiol 170:296–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torkkeli PH, Panek I, Meisner S (2011) Ca2+ /calmodulin-dependent protein kinase II mediates the octopamine-induced increase in sensitivity in spider VS-3 mechanosensory neurons. Eur J Neurosci 33:1186–1196

    Article  PubMed  Google Scholar 

  • Torkkeli PH, Meisner S, Pfeiffer K, French AS (2012) GABA and glutamate receptors have different effects on excitability and are differentially regulated by calcium in spider mechanosensory neurons. Eur J Neurosci 36:3602–3614

    Article  PubMed  Google Scholar 

  • Torkkeli PH, Liu H, French AS (2015) Transcriptome analysis of the central and peripheral nervous systems of the spider Cupiennius salei reveals multiple putative Cys-loop ligand gated ion channel subunits and an acetylcholine binding protein. PLoS ONE 10:e0138068

    Article  PubMed  PubMed Central  Google Scholar 

  • von Trotha JW, Vernier P, Bally-Cuif L (2014) Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur J Neurosci 40:3302–3315

    Article  Google Scholar 

  • Trudeau LE (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci 29:296–310

    PubMed  PubMed Central  Google Scholar 

  • Usherwood PN, Machili P, Leaf G (1968) L-glutamate at insect excitatory nerve-muscle synapses. Nature 219:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Whim MD, Lloyd PE (1989) Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc Natl Acad Sci U S A 86:9034–9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmer A, Höger U, Meisner S, French AS, Torkkeli PH (2005) Spider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents. J Neurosci 25:1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Widmer A, Panek I, Höger U, Meisner S, French AS, Torkkeli PH (2006) Acetylcholine receptors in spider peripheral mechanosensilla. J Comp Physiol A 192:85–95

    Article  CAS  Google Scholar 

  • Yasuyama K, Salvaterra PM (1999) Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc Res Tech 45:65–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Stephen Whitefield (Dalhousie University) for help with confocal microscopy. We are grateful to Nicole Skaluba and Morgen Livoli for helpful discussions and suggestions. We also thank Drs. Axel Schmid (University of Vienna), Ian Meinertzhagen (Dalhousie University) and Douglas Facey (Saint Michael’s College) for valuable discussions. We would like to acknowledge support through the office of the Vice President of Academic Affairs of SMC and faculty of the Biology Department with the acquisition of essential supplies. Research reported in this paper was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103449 (RF-F and CA). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. Further support was received from the George I. Alden Trust and the John C Hartnett fund (MR) and the Natural Sciences and Engineering Research Council of Canada (NSERC), through discovery grants RGPIN-2014-05565 to PHT and RGPIN/03712 to ASF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Fabian-Fine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabian-Fine, R., Anderson, C.M., Roush, M.A. et al. The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei . Cell Tissue Res 370, 71–88 (2017). https://doi.org/10.1007/s00441-017-2652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2652-6

Keywords

Navigation