Skip to main content
Log in

Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Crustacean-SIFamide (GYRKPPFNGSIFamide) is a novel neuropeptide that was recently isolated from crayfish nervous tissue. We mapped the localisation of this peptide in the median brain and eyestalk neuropils of the marbled crayfish (Marmorkrebs), a parthenogenetic crustacean. Our experiments showed that crustacean-SIFamide is strongly expressed in all major compartments of the crayfish brain, including all three optic neuropils, the lateral protocerebrum with the hemiellipsoid body, and the medial protocerebrum with the central complex. These findings imply a role of this peptide in visual processing already at the level of the lamina but also at the level of the deeper relay stations. Immunolabelling is particularly strong in the accessory lobes and the deutocerebral olfactory lobes that receive a chemosensory input from the first antennae. Most cells of the olfactory globular tract, a projection neuron pathway that links deuto- and protocerebrum, are labelled. This pathway plays a central role in conveying tactile and olfactory stimuli to the lateral protocerebrum, where this input converges with optic information. Weak labelling is also present in the tritocerebrum that is associated with the mechanosensory second antennae. Taken together, we suggest an important role of crustacean-SIFamidergic neurons in processing high-order, multimodal input in the crayfish brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    Article  PubMed  Google Scholar 

  • Blaustein DN, Derby CD, Simmons RB, Beall AC (1988) Structure of the brain and medulla terminals of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii with an emphasis on olfactory centers. J Crust Biol 8:493–519

    Article  Google Scholar 

  • Cournil I, Casasnovas B, Helluy SM, Beltz BS (1995) Dopamine in the lobster Homarus gammarus. II. Dopamine-immunoreactive neurons and development of the nervous system. J Comp Neurol 362:1–16

    Article  PubMed  CAS  Google Scholar 

  • Dircksen H, Skiebe P, Abel B, Agricola H, Buchner K, Muren JE, Nässel DR (1999) Structure, distribution, and biochemical activity of novel members of the allatostatin family in the crayfish Orconectes limosus. Peptides 20:695–712

    Article  PubMed  CAS  Google Scholar 

  • Elofsson R (1983) 5HT-like immunoreactivity in the central nervous system of the crayfish, Pacifastacus leniusculus. Cell Tissue Res 232:221–236

    Article  PubMed  CAS  Google Scholar 

  • Glantz RM (2001) Polarization analysis in the crayfish visual system. J exp Biol 204:2383–2390

    PubMed  CAS  Google Scholar 

  • Glantz RM, Miller CS, Nässel DR (2000) Tachykinin-related peptide and GABA-mediated presynaptic inhibition in crayfish photoreceptors. J Neurosci 20:1780–1790

    PubMed  CAS  Google Scholar 

  • Harzsch S (2002) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

    Article  PubMed  Google Scholar 

  • Harzsch S, Dawirs RR (1995) A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invertebr Neurosci 1:53–65

    Article  CAS  Google Scholar 

  • Harzsch S, Dawirs RR (1996) Development of neurons exhibiting FMRFamide-related immunoreactivity in the central nervous system of spider crab larvae (Hyas araneus L., Decapoda, Majidae). J Crust Biol 16:10–19

    Article  Google Scholar 

  • Harzsch S, Dircksen H, Beltz B (2000) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: similarities worth the insect circadian pacemaker system. Soc Neurosci Abstr 916

  • Huybrechts J, Nusbaum MP, Vanden Bosch L, Baggerman G, De Loof A, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab Cancer borealis. Biochem Biophys Res Comm 308:535–544

    Article  PubMed  CAS  Google Scholar 

  • Johansson KUI, Carlberg M (1994) NADPH-diaphorase histochemistry and nitric oxide synthase activity in deutocerebrum of the crayfish, Pacifastacus leniusculus (Crustacea, Decapoda). Brain Res 619:36–42

    Article  Google Scholar 

  • Johannson KUI, Wallén R, Hallberg E (1996) Electron microscopic localization and experimental modification of NADPH-diaphorase activity in crustacean sensory axons. Invertebr Neurosci 2:167–173

    Article  Google Scholar 

  • Johansson KUI, Lundquist CT, Hallberg E, Nässel DR (1999) Tachykinin-related neuropeptide in the crayfish olfactory midbrain. Cell Tissue Res 296:405–415

    Article  CAS  Google Scholar 

  • Kobiersky LA, Beltz BS, Trimmer BA, Kravitz EA (1987): FMRFamide like peptides of Homarus americanus. Distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. J Comp Neurol 266:1–15

    Article  Google Scholar 

  • Langworthy K, Helluy S, Benton J, Beltz B (1997) Amines and peptides in the brain of the American lobster: immunocytochemical localization patterns and implications for brain function. Cell Tissue Res 288:191–206

    Article  PubMed  CAS  Google Scholar 

  • Mancillas JR, McGinty JF, Selverston AJ, Karten H, Bloom FE (1981) Immunocytochemical localization of enkephalin and substance P in retina and eyestalk neurones of lobster. Nature 293:576–578

    Article  PubMed  CAS  Google Scholar 

  • Mangerich S, Keller R (1988) Localization of piment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus meanas and Orconectes L. with reference to Famide immunoreactivity in Oroconectes limosus. Cell Tissue Res 253:199–208

    Article  PubMed  CAS  Google Scholar 

  • Mangerich S, Keller R, Dircksen H (1986) Immunocytochemical identification of structures containing putative red pigment concentrating hormone in two species of decapod crustaceans. Cell Tissue Res 245:377–386

    Article  CAS  Google Scholar 

  • McKinzie ME, Benton JL, Beltz BS, Mellon DF (2003) Parasol cells of the hemiellipsoid body in the crayfish Procambarus clarkii: dendritic branching patterns and functional implications. J Comp Neurol 462:168–179

    Article  PubMed  Google Scholar 

  • Mellon D Jr (2002) Convergence of multimodal sensory input onto higher-level neurons of the crayfish olfactory pathway. J Neurophysiol 84:3043–3055

    Google Scholar 

  • Mellon DeF (2003) Active dendritic properties constrain input-output relationships in neurons of the central olfactory pathway in the crayfish forebrain. Microsc Res Tech 60:278–290

    Article  PubMed  Google Scholar 

  • Mellon DeF, Alones V (1993) Cellular organization and growth-related plasticity of the crayfish olfactory midbrain. Microsc Res Tech 24:231–259

    Article  PubMed  Google Scholar 

  • Mellon DeF, Alones V (1994) Identification of three classes of multiglomerular, broad-spectrum neurons in the crayfish olfactory midbrain by correlated patterns of electrical activity and dendritic arborization. J Comp Physiol A 177:55–71

    Google Scholar 

  • Mellon DeF, Wheeler CJ (1999) Coherent oscillations in membrane potential synchronize impulse bursts in central olfactory neurons of the crayfish. J Neurophysiol 81:1231–1241

    PubMed  Google Scholar 

  • Mellon DeF, Alones V, Lawrence DM (1992a) Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system. J Comp Neurol 321:93–111

    Article  PubMed  Google Scholar 

  • Mellon DeF, Sandeman DC, Sandeman R (1992b) Characterization of oscillatory olfactory interneurons in the protocerebrum of the crayfish. J Exp Biol 167:15–38

    Google Scholar 

  • Nässel DR (1976) The retina and retinal projection on the lamina of the crayfish Pacifastacus leniusculus (Dana). J Comp Neurol 167:341–360

    Article  Google Scholar 

  • Nässel DR (1977) Types and arrangement of neurons in the crayfish optic lamina. Cell Tissue Res 179:45–75

    PubMed  Google Scholar 

  • Nässel DR, Homberg U (2006) Neuropeptides of the insect brain. Cell Tissue Res 326:1–24

    Article  PubMed  Google Scholar 

  • Nässel DR, Waterman TH (1977) Golgi EM evidence for visual information channelling in the crayfish lamina ganglionaris. Brain Res 130:556–563

    Article  Google Scholar 

  • Nussbaum T, Dircksen H (1995) Neuronal pathways of classical crustacean neurohormones in the central nervous system of the woodlouse, Oniscus asellus (L.). Phil Trans R Soc Lond B 347:139–154

    Article  CAS  Google Scholar 

  • Orona E, Battelle BA, Ache BW (1990) Immunohistochemical and biochemical evidence for the putative inhibitory neurotransmitters histamine and GABA in lobster olfactory lobes. J Comp Neurol 294:633–646

    Article  PubMed  CAS  Google Scholar 

  • Rothe H, Lüschen W, Asken A, Willig A, Jaros P (1991) Purified crustacean enkephalin inhibits release of hyperglycemic hormone in the crab Carcinus maenas. Comp Biochem Physiol C99:57–62

    Google Scholar 

  • Rudolph PH, Spaziani E (1990) Distribution of serotonergic neurons in the eyestalk and brain of the crab, Cancer antennarius. Comp Biochem Physiol 97C:241–245

    CAS  Google Scholar 

  • Sandeman D, Mellon DeF (2002) Olfactory centers in the brain of the freshwater crayfish. In: Wiese K (ed.). The crustacean nervous system, Springer, Berlin Heidelberg New York, pp. 386–405

    Google Scholar 

  • Sandeman RE, Sandeman DC (1987) Serotonin-like immunoreactivity of giant olfactory interneurons in the crayfish brain. Brain Res 403:371–374

    Article  PubMed  CAS  Google Scholar 

  • Sandeman DC, Sandeman RE (1994) Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes. J Comp Neurol 341:130–144

    Article  PubMed  CAS  Google Scholar 

  • Sandeman DC, Scholtz G (1995) Ground plans, evolutionary changes and homologies in decapod Crustacea. In: Breidbach O, Kutsch W (eds), The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel

    Google Scholar 

  • Sandeman DC, Sandeman RE, Aitken AR (1988) Atlas of serotonin-containing neurons in the optic lobes and brain of the crayfish, Cherax destructor. J Comp Neurol 269:465–478

    Article  PubMed  CAS  Google Scholar 

  • Sandeman DC, Sandeman RE, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

    Article  Google Scholar 

  • Sandeman DC, Beltz B, Sandeman RE (1995a) Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. J Comp Neurol 352:263–279

    Article  PubMed  CAS  Google Scholar 

  • Sandeman RE, Watson AHD, Sandeman DC (1995b) Ultrastructure of the synaptic terminals of the dorsal giant serotonin-IR neurons and deutocerebral commissure interneurons in the accessory and olfactory lobes of the crayfish. J Comp Neurol 361:617–632

    Article  PubMed  CAS  Google Scholar 

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev 34:257–299

    Article  Google Scholar 

  • Schmidt M, Ache BW (1992) Antennular projections to the midbrain of the spiny lobster. II. Sensory innervation of the olfactory lobe. J Comp Neurol 318:291–303

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Ache BW (1997) Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res 287:541–563

    Article  PubMed  Google Scholar 

  • Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806

    Article  PubMed  CAS  Google Scholar 

  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405

    Article  Google Scholar 

  • Sithigornul P, Pupuem J, Krungkasem C, Longyant S, Chaivisuthangkura P, Sithigornul W, Petsom A (2002) Seven novel FMRFamide-like neuropeptide sequences from the eyestalks of the giant tiger prawn Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 131:325–337

    Article  Google Scholar 

  • Siwicki KK, Bishop CA (1986) Mapping of proctolin-like immunoreactivity in the nervous systems of lobster and crayfish. J Comp Neurol 243:435–453

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed.), Handbook of sensory physiology. vol. VII/6B, invertebrate visual center and behaviors I. Springer-Verlag, Berlin, pp. 1–132

    Google Scholar 

  • Sullivan JM, Beltz BS (2001a) Development and connectivity of olfactory pathways in the brain of the lobster Homarus americanus. J Comp Neurol 441:23–43

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2001b) Neutral pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz B (2005a) Integration and segregation of inputs to higher-order neuropils of the crayfish brain. J Comp Neurol 481:118–126

    Article  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005b) Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. J Neurobiol 65:157–170

    Article  PubMed  Google Scholar 

  • Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: A common strategy across diverse species. J Comp Neurol 500:574–584

    Article  PubMed  Google Scholar 

  • Talavera E, Martínez-Lorenzana G, León-Olea M (1995) Histochemical distribution of NADPH-diaphorase in the cerebral ganglion of the crayfish Cambarellus montezumae. Neurosci Lett 187:177–180

    Article  PubMed  CAS  Google Scholar 

  • Tautz J, Müller-Tautz RM (1983) Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 218:415–425

    Article  PubMed  CAS  Google Scholar 

  • Utting M, Agricola HJ, Sandeman R, Sandeman D (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416:245–261

    Article  PubMed  CAS  Google Scholar 

  • Verleyen P, Huybrechts J, Baggerman G, Van Lommel A, De Loof A, Schoofs L (2004) SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem Biophys Res Commun 320:334–341

    Article  PubMed  CAS  Google Scholar 

  • Vilpoux K, Sandeman R, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223

    Article  PubMed  CAS  Google Scholar 

  • Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring's sensory deficiencies. J Morphol 262:566–582

    Article  PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (Marbled Crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311

    Article  PubMed  Google Scholar 

  • Wachowiak M, Ache BW (1994) Morphology and physiology of multiglomerular olfactory projection neurons in the spiny lobster. J Comp Physiol A 175:35–48

    Article  Google Scholar 

  • Wachowiak M, Diebel CE, Ache BW (1997) Local interneurons define functionally distinct regions within lobster olfactory glomeruli. J Exp Biol 200:989–1001

    PubMed  Google Scholar 

  • Wood DE, Derby CD (1996) Distribution of dopamine-like immunoreactivity suggests a role for dopamine in the courtship display behavior of the blue crab, Callinectes sapidus. Cell Tissue Res 285:321–330

    Article  PubMed  CAS  Google Scholar 

  • Wood DE, Nishikawa M, Derby CD (1996) Proctolin like immunoreactivity and identified neurosecretory cells as putative substrates for modulation of courtship display behavior in the blue crab, Callinectus sapidus. J Comp Neurol 368:153–163

    Article  PubMed  CAS  Google Scholar 

  • Yasuda A, Yasuda-Kamatani Y (2002) Topological mass spectrometry analysis in crustacean endocrinology. In Proceedings of the 21st Conference of European Comparative Endocrinology. Keller R, Dircksen H, Sedlmeier D, Vaudry H, (eds) Monduzzi Editore, Bologna, pp 447–450

  • Yasuda A, Yasuda-Kamatani Y, Nozaki M, Nakajima T (2004) Identification of GYRKPPFNGSIFamide (crustacean-SIFamide) in the crayfish Procambarus clarkii by topological mass spectrometry analysis. Gen Comp Endocrinol 135:391–400

    Article  PubMed  CAS  Google Scholar 

  • Yasuda-Kamatani Y, Yasuda A (2006) Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii. J Comp Neurol 496:135–147

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harzsch.

Additional information

Funding:

Harald Wolf is gratefully acknowledged for providing laboratory facilities at the University of Ulm, and Kathia Fabritius-Vilpoux and Verena Rieger for assistance with rearing the crayfish. We wish to thank David Sandeman and Barbara Beltz for discussion on the crayfish brain architecture and comments on an earlier version of this manuscript. Our special thanks go to Andy Sombke for his assistance in assembling the final figures. This study was supported by DFG grants Ha 2540/3 and 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polanska, M.A., Yasuda, A. & Harzsch, S. Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish. Cell Tissue Res 330, 331–344 (2007). https://doi.org/10.1007/s00441-007-0473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0473-8

Keywords

Navigation