Skip to main content
Log in

The acrosome of eutherian mammals

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2015

Abstract

The acrosome is not just a bag of enzymes, most of which, if not all, are singly non-essential for sperm–oocyte interaction. The Golgi-derived acrosomal cap reveals some extraordinary development and structure particularities. The acrosome of eutherian spermatozoa basically consists of two parts, the anterior and equatorial segments; the present review is devoted to the former, the initial actor in fertilization. Its occasional fanciful morphological changes during epididymal maturation are analyzed, together with its heterogeneous contents: enzymes, zona binding proteins, structural proteins (matrix) and yet to be chemically characterized crystalloids. The plasma and acrosomal membranes present stabilized ordered domains, whereas glycoprotein-free areas appear during capacitation and before fusion. Exocytosis, induced by the cumulus oophorus and/or the zona pellucida, may generally start proximally and progress anteriorly, resulting in the detachment of a hybrid membrane shroud, whose entity is probably maintained by the bound matrix. Immediately released soluble enzymes must be active during the first interactions of the gametes, whereas other lysins, bound to the matrix or stored as proenzymes, are only progressively released. Zona binding is probably achieved via the shroud and/or the IAM (depending on species). Penetration along an incurved slit through the stratified zona is allowed by the rigid and denuded head tip and flagellar hyperactivity, and assisted by the local proteolytic activity of proteasomes bound to the IAM, the unique essential zona lysin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguas AP, Pinto Da Silva P (1983) Regionalization of transmembrane glycoproteins in the plasma membrane of boar sperm head is revealed by fracture label. J Cell Biol 97:1356–1364

    Article  PubMed  CAS  Google Scholar 

  • Aguas AP, Pinto Da Silva P (1985) The acrosomal membrane of boar sperm: a Golgi-derived membrane poor in glycoconjugates. J Cell Biol 100:528–534

    Article  PubMed  CAS  Google Scholar 

  • Aguas AP, Pinto Da Silva P (1989) Bimodal distribution of surface transmembrane glycoproteins during Ca2+-dependent secretion (acrosome reaction) in boar spermatozoa. J Cell Sci 92:467–471

    Google Scholar 

  • Austin CR, Bishop MWH (1958) Role of the rodent acrosome and perforatorium in fertilization. Proc R Soc Lond B 149:241–248

    Article  PubMed  CAS  Google Scholar 

  • Austin CR, Braden AWH (1956) Early reaction of the rodent egg to spermatozoon penetration. J Exp Biol 33:358–365

    Google Scholar 

  • Baba T, Azuma S, Kashiwabara S-I, Totoda Y (1994) Sperm from mice carrying a targeted mutation. J Biol Chem 269:31845–31849

    PubMed  CAS  Google Scholar 

  • Baba T, Kashiwabara S, Honda A, Yamagata K, Wu Q, Ikawa M, Okabe M, Baba T (2002) Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J Biol Chem 277:30310–30314

    Article  PubMed  CAS  Google Scholar 

  • Baltz JM, Katz DF, Cone RA (1988) Mechanics of sperm-egg interaction at the zona pellucida. Biophys J 5:643–654

    Article  Google Scholar 

  • Barros C, Bedford JM, Franklin LE, Austin CR (1967) Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol 3:C1–C5

    Article  Google Scholar 

  • Bedford JM (2011) Site of the mammalian sperm physiological acrosome reaction. Proc Natl Acad Sci U S A 10:4703–4704

    Article  Google Scholar 

  • Bedford JM (2014) Singular features of fertilization and their impact on the male reproductive system in eutherian mammals. Reproduction 14:43–52

    Google Scholar 

  • Bedford JM, Calvin H (1974) The occurrence and possible functional significance of -S-S- crosslinks in sperm heads, with particular reference to eutherian mammals. J Exp Zool 18:137–156

    Article  Google Scholar 

  • Bedford JM, Nicander L (1971) Ultrastructural changes in the acrosome and sperm membranes during maturation of spermatozoa in the testis and epididymis of the rabbit and monkey. J Anat 108:527–543

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bedford JM, Moore HD, Franklin LE (1979) Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp Cell Res 119:119–126

    Article  PubMed  CAS  Google Scholar 

  • Benoff S, Hurley IR, Mandel FS, Cooper GW, Herschlag A (1997) Induction of the human sperm acrosome reaction with mannose-containing neoglycoprotein ligands. Mol Hum Reprod 3:827–837

    Article  PubMed  CAS  Google Scholar 

  • Breed WG, Tan S, Leigh CM, Aplin KP, Dvorakova-Hortova K, Moore HDM (2011) The morphology of the squirrel spermatozoon: a highly complex male gamete with a massive acrosome. J Morphol 272:883–889

    Article  PubMed  Google Scholar 

  • Buffone MG, Foster JA, Gerton GL (2008) The role of the acrosomal matrix in fertilization. Int J Dev Biol 52:511–522

    Article  PubMed  Google Scholar 

  • Buffone MG, Kim K-S, Doak BJ, Rodriguez-Miranda E, Gerton GL (2009a) Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from mouse sperm acrosomal matrix. L Cell Sci 122:3153–3160

    Article  CAS  Google Scholar 

  • Buffone MG, Rodriguez-Miranda E, Storey BT, Gerton GL (2009b) Acrosomal exocytosis of mouse sperm progresses in a consistent direction in response to zona pellucida. J Cell Physiol 220:611–620

    Article  PubMed  CAS  Google Scholar 

  • Buffone MG, Hirohashi N, Gerton GL (2014) Unsolved questions concerning mammalian sperm acrosomal exocytosis. Biol Reprod 90:1–5

    Article  CAS  Google Scholar 

  • Byrne K, Leahy T, McCulloch R, Colgrave ML, Holland MK (2012) Comprehensive mapping of the bull sperm surface proteome. Proteomics 12:3559–3579

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S, Bansal P, Sutovsky P, Gupta SK (2008) Role of proteasomal activitie in the induction of acrosomal exocytosis human spermatozoa. Reprod Biomed Online 16:391–400

    Article  PubMed  CAS  Google Scholar 

  • Cherr GN, Lambert H, Meizel S, Katz DF (1986) In vitro studies of the golden hamster sperm acrosome reaction: completion on the zona pellucid and induction homologous solubilized zonae pellucidae. Dev Biol 114:119–131

    Article  PubMed  CAS  Google Scholar 

  • Clermont Y, Leblond CP (1955) Spermiogenesis of man, monkey, ram, and other mammals as shown by the periodic acid-Schiff technique. Am J Anat 96:29–253

    Article  Google Scholar 

  • Cooper GW, Bedford JM (1976) Asymmetry of spermiation and sperm surface change patterns over the giant acrosome in the musk shrew, Suncus murinus. J Cell Biol 69:415–428

    Article  PubMed  CAS  Google Scholar 

  • Courtens JL, Courot M, Fléchon J-E (1976) The perinuclear substance of boar, bull, ram and rabbit spermatozoa. J Ultrastr Res 68:58–71

    Google Scholar 

  • Cummins JM, Yanagimachi R (1982) Hamster spermatozoa undergo acrosome reaction during or after passage through the cumulus. Gamete Res 5:239–256

    Article  Google Scholar 

  • Dean J (2004) Reassessing the molecular biology of sperm-egg recognition with mouse genetics. Bioessays 26:29–38

    Article  PubMed  CAS  Google Scholar 

  • Drobnis EZ, Yudin AI, Cherr GN, Katz DE (1988) Hamster sperm penetration of the zona pellucida: kinematic analysis and mechanical implications. Dev Biol 130:311–323

    Article  PubMed  CAS  Google Scholar 

  • Dunbar BS, Dudkiewicz AB, Bundman DS (1985) Proteolysis of specific porcine zona pellucida glycoproteins by boar acrosin. Biol Reprod 32:619–630

    Article  PubMed  CAS  Google Scholar 

  • Dziuk PJ, Dickmann Z (1965) Sperm penetration through the zona pellucida of the sheep egg. J Exp Zool 158:237–239

    Article  PubMed  CAS  Google Scholar 

  • Einspanier R, Schuster H, Schams D (1993) A comparison of hormone levels in follicle-lutein-cyst and in normal bovine ovarian follicles. Theriogenology 40:181–188

    Article  PubMed  CAS  Google Scholar 

  • Ellis DJ, Shadan S, James PS, Henderson RM, Edwardson JM, Hutchins A, Jones R (2002) Post-testicular development of a novel membrane substructure within the equatorial segment of ram, bull, boar and goat spermatozoa as view by atomic force microscopy. J Struct Biol 138:187–198

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW, Hollenberg RD (1963) Changes in the acrosome of guinea pig spermatozoa during passage through the epididymis. Z Zell Forsch 60:276–292

    Article  CAS  Google Scholar 

  • Ferrer M, Rodriguez H, Zara L, Yu Y, Xu W, Oko R (2012) MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res 349:881–895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flaherty SP, Olson GE (1991) Ultrastructural analysis of the acrosome reaction in a population of single guinea pig sperm. Anat Rec 228:186–194

    Article  Google Scholar 

  • Fléchon J-E (1970) Nature glycoprotéique des granules corticaux de l’oeuf de lapine. Mise en evidence par l’utilisation de techniques cytochimiques ultrastructurales. J Microsc 9:176–292

    Google Scholar 

  • Fléchon J-E (1974) Freeze-fracturing of rabbit spermatozoa. J Microsc 19:59–64

    Google Scholar 

  • Fléchon J-E (1975) Ultrastructural and cytochemical modifications of rabbit spermatozoa during epididymal transport. In: Hafez ESE, Thibault CG (eds) The biology of spermatozoa. Karger, Basel, pp 36–45

    Google Scholar 

  • Fléchon J-E (1979) Sperm glycoproteins of the boar, bull, rabbit and ram: i acrosomal glycoproteins. Gamete Res 2:43–51

    Article  Google Scholar 

  • Fléchon J-E (1985) Sperm surface changes during the acrosome reaction as observed by freeze-fracture. Am J Anat 174:239–246

    Article  PubMed  Google Scholar 

  • Fléchon J-E (1987) Acrosome reaction, sperm penetration, and gamete fusion in Mammals. In: Mohri H (ed) New horizons in sperm cell research. Japan Scientific Societies, Tokyo, pp 235–246

    Google Scholar 

  • Fléchon J-E, Dubois MP (1975) Localisation immunocytochimique de la hyaluronidase dans les spermatozoides de mammifères domestiques. C R Acad Sci 280:877–880

    Google Scholar 

  • Fléchon J-E, Huneau D, Solari A, Thibault C (1975) Réaction corticale et bloquage de la polyspermie dans l’oeuf de lapine. Ann Biol Anim Bioch Biophys 15:9–18

    Article  Google Scholar 

  • Fléchon J-E, Harrison RAP, Fléchon B, Escaig J (1986) Membrane fusion events in the Ca2+/ionophore induced acrosome reaction of ram spermatozoa. J Cell Sci 81:43–63

    PubMed  Google Scholar 

  • Fléchon J-E, Degrouard J, Kopecny V, Pivko J, Pavlok A, Motlik J (2003) The extracellular matrix of porcine mature oocytes: origin, composition and presumptive roles. Reprod Biol Endocr 1:12

    Article  Google Scholar 

  • Fléchon J-E, Kopecny V, Pivko J, Pavlok A, Motlik J (2004) Texture of the zona pellucida of the mature pig oocyte. The mammalian egg envelope revisited. Reprod Nutr Dev 44:207–218

    Article  PubMed  Google Scholar 

  • Friend DS, Fawcett DW (1974) Membrane differentiation in freeze-fractured mammalian sperm. J Cell Biol 63:641–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaddum-Ross P, Blandau RJ (1977) Proteolytic activity of guinea pig spermatozoa after induction of the acrosomal reaction in vitro. Am J Anat 149:423–430

    Article  Google Scholar 

  • Gadella BM, Lopes-Cadoso M, Van Golde LM, Colenbrander B, Gadella TW Jr (1995) Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event on boar spermatozoa. J Cell Sci 108:935–946

    PubMed  CAS  Google Scholar 

  • Gould SF, Bernstein MH (1975) The localisation of bovine sperm hyaluronidase. Differentiation 3:123–132

    Article  PubMed  CAS  Google Scholar 

  • Green DP (1987) Mammalian sperm cannot penetrate the zona pellucid solely by force. Exp Cell Res 169:31–38

    Article  PubMed  CAS  Google Scholar 

  • Guyonnet B, Zabet-Moghaddam M, SanFrancisco S, Cornwall GA (2012) Isolation and proteomic characterization of mouse sperm acrosomal matrix. Mol Cell Proteomics 11:758–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guyonnet B, Egge N, Cornwall GA (2014) Functional amyloids in the mouse sperm acrosome. Mol Cell Biol 34:2624–2634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy DM, Oda MN, Friend DS, Huang TF Jr (1991) A mechanism of differential release of acrosomal enzymes during the acrosome reaction. Biochem J 275:759–766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harper CV, Cummerson JA, White MRH, Publicover J, Johnson PM (2008) Dynamic resolution of acrosomal exocytosis in human sperm. J Cell Sci 121:2130–2135

    Article  PubMed  CAS  Google Scholar 

  • Hiroashi N, Gerton GL, Buffone MG (2011) Video imaging of the sperm acrosome reaction during in vitro fertilization. Comm Integr Biol 4:471–476

    Article  Google Scholar 

  • Huang TTF Jr, Yanagimachi R (1985) Inner acrosomal membrane of mammalian spermatozoa: its properties and possible functions in fertilization. Am J Anat 174:249–268

    Article  PubMed  Google Scholar 

  • Huneau D, Harrison RAP, Fléchon J-E (1984) Ultrastructural localization of proacrosin and acrosin in ram spermatozoa. Gamete Res 9:425–440

    Article  CAS  Google Scholar 

  • Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R (2011) Acrosome reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci U S A 108:2008–2011

    Google Scholar 

  • Ito C, Miyado K, Fujimura L, Hatano M, Yamatoga K, Yoshida K, Toshimori K (2013) Integration of the mouse sperm fertilization-related protein equatorin into the acrosome during spermatogenesis as revealed by super-resolution and immunoelectron microscopy. Cell Tissue Res 352:739–750

    Article  PubMed  CAS  Google Scholar 

  • Jedlicki A, Barros C (1985) Scanning electron microscope study of in vitro penetration gamete interactions. Gamete Res 11:121–131

    Article  Google Scholar 

  • Jin M, Fujiwara E, Kakinchi Y, Okabe M, Satoch Y, Baba SA, Chiba K, Hiroshi N (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucid during in vitro fertilization. Proc Natl Acad Sci U S A 108:4892–4896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones R, James PS, Howes L, Bruckbauer A, Klenerman D (2007) Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl 9:438–444

    Article  PubMed  CAS  Google Scholar 

  • Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA (2008) The equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated proteins. Biol Reprod 79:421–431

    Article  PubMed  CAS  Google Scholar 

  • Khalil MB, Chakralandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, Carmona E, Vuong N, Kumarathasan P, Wong PTT, Carrier D, Tanphaichitr N (2006) Sperm capacitation induces an increase in lipid rafts having zona pellucid binding ability and containing sulfogalactosylglycerolipid. Dev Biol 290:220–235

    Article  CAS  Google Scholar 

  • Kim K-S, Foster JA, Kvasnicka KW, Gerton GL (2011) Transitional states of acrosomal exocytosis and proteolytic processing of the acrosomal matrix in guinea pig sperm. Mol Reprod Dev 78:930–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koehler JM (1975) Periodicities in the acrosome or acrosomal membranes: some observations on mammalian spermatozoa. In: Buchett JG, Racey PA (eds) The biology of the male gamete. Academic, New York, pp 337–347

    Google Scholar 

  • Kolle S, Sinowatz F, Boie G, Totzauer I, Amselgruber W, Pendl J (1996) Localization of the mRNA encoding the zona protein ZP3 alpha in the porcine ovary, oocyte and embryo by non-radioactive in situ hybridization. Histochem J 28:441–447

    Article  PubMed  CAS  Google Scholar 

  • Kongmanas K, Kruevaisayarwan H, Saewu A, Sugend C, Fernande J, Souda P, Angel JB, Faull KF, Aitken RJ, Withelegge J, Hardy D, Berger T, Baker MA, Tanphaichitr N (2014) Proteomic characterization of pig sperm anterior head plasma membrane reveals roles of acrosomal proteins in ZP3 binding. J Cell Physiol 230:449–463

    Article  CAS  Google Scholar 

  • Kopecny V, Fléchon J-E (1981) Fate of acrosomal glycoproteins during the acrosomal reaction and fertilization: a light and electron microscope autoradiographic study. Biol Reprod 24:201–216

    Article  PubMed  CAS  Google Scholar 

  • Kopecny V, Fléchon J-E (1987) Ultrastructural localiszation of labelled acrosomal glycoproteins during in vivo fertilization of the rabbit. Gamete Res 71:35–42

    Article  Google Scholar 

  • Kuzan FB, Flemming AD, Seidel GE (1984) Successful fertilization in vitro of fresh intact oocytes by perivitelline (acrosome reacted) spermatozoa of the rabbit. Fertil Steril 41:766–770

    PubMed  CAS  Google Scholar 

  • Liu M (2011) The biology and dynamics of mammalian cortical granules. Reprod Biol Endocr 9:149

    Article  CAS  Google Scholar 

  • Marti JL, Cebrian-perez JA, Muino-Blanco T (2000) Assessement of the acrosomal status of ram spermatozoa by RCA lectin-binding andpartition in an aqueous two-phase system. J Androl 21:541–548

    PubMed  CAS  Google Scholar 

  • Miles E, Sutowsky P (2014) Sperm proteasome as a putative egg coat lysin in mammals. In: Sawada et al. (eds), Sexual reproduction in animals and plants. Springer, Tokyo, pp 441–462

  • Monné M, Han L, Schwend T, Burendahl S, Jovine L (2008) Crystal structure of the ZP-N domain of the ZP3 reveals the core fold of animal egg coats. Nature 456:653–657

    Article  PubMed  CAS  Google Scholar 

  • Moore HDM, Bedford JM (1978) Ultrastructure of the equatorial segment of the hamster spermatozoa during penetration of the oocyte. J Ultrastr Res 62:110–117

    Article  CAS  Google Scholar 

  • Morales P, Kong M, Pizzaro E, Pasten C (2003) Participation of the sperm proteasome in human fertilization. Hum Reprod 18:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Mugnier S, Dell’Aquila ME, Pelaez J, Douet C, Ambruosi B, De Santis T, Lacalandra GM, Lebos C, Sizaret P-Y, Delaleu B, Monget P, Mermillod P, Magistrini M, Meyers SA, Goudet G (2009) New insight into the mechanism of fertilization: comparaison of the fertilization steps, composition, and structure of the zona pellucida between horses and pigs. Biol Reprod 81:856–870

    Article  PubMed  CAS  Google Scholar 

  • Myles DG, Hyatt H, Primakoff P (1987) Binding of both acrosome-intact and acrosome-reacted guinea pig sperm to the zona pellucida during in vitro fertilization. Dev Biol 121:559–567

    Article  PubMed  CAS  Google Scholar 

  • NagDas SK, Winfrey VP, Olson GE (1996) Identification of hydrolase binding activities of the acrosomal matrix of hamster spermatozoa. Biol Reprod 55:1405–1414

    Article  PubMed  CAS  Google Scholar 

  • NagDas SK, Hamilton SL, Raychoudhury S (2010) Identification of acrosome matrix-specific hydrolases binding proteins of bovine cauda epididymal spermatozoa. J Androl 31:177–187

    Article  PubMed  CAS  Google Scholar 

  • Nguyen EB, Westmuckett AD, Moore KL (2014) SPACA7 is a novel male germ cell-specific protein localized to the sperm acrosome that is involved in fertilization in mice. Biol Reprod 16:1–13

    Google Scholar 

  • Nicander L, Bane A (1966) Fine structure of the sperm head in some mammals, with particular reference to the acrosome and the acrosomal substance. Z Zellforsch Mikrosk Anat 72:496–515

    Article  PubMed  CAS  Google Scholar 

  • Oko R, Maravei D (1994) Protein composition of the perinuclear theca of bull spermatozoa. Biol Reprod 50:1000–1014

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP (1985a) Structure of membrane domains and matrix components of bovine acrosome. J Ultrastruct Res 90:9–25

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP (1985b) Substructure of a cytoskeletal complex associated with the hamster sperm acrosome. J Ultrastruct Res 92:167–179

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP (1994) Structure of acrosomal matrix domains of rabbit sperm. J Struct Biol 112:41–48

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Neff TC, Lukas T, NagDas SK (1997) An antigenetically related polypeptide family is major structural constituent of a stable acrosomal matrix assembly in bovine spermatozoa. Biol Reprod 57:325–334

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VE, Nagdas SK (1998) Acrosome biogenesis in the hamster: ultrastructurally distinct matrix regions are assembled from a common precursor polypeptide. Biol Reprod 58:361–370

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM (1972) Substructure of the mammalian acrosome. J Ultrastruct Res 38:591–604

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM, Bedford JM (1985) Unusual features of sperm ultrastructure in the musk shrew Suncus Murinus. J Exp Zool 235:119–126

    Article  PubMed  CAS  Google Scholar 

  • Puigmule M, Fabrega A, Yeste M, Bonet S, Pinart E (2011) Study of the proacrosin/acrosin system in epididymal, ejaculated and in vitro capacitated boar spermatozoa. Reprod Fertil Dev 23:837–845

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos J, Moreno RD, Sutovsky P, Chan AW-S, Hewitson L, Wessel GM, Simerly CR, Schatten G (2000) SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 223:54–69

    Article  PubMed  CAS  Google Scholar 

  • Redgrove KA, Anderson AL, Dun MD, McLaughlin EA, O’Brian MK, Aitken RJ, Nixon B (2011) Involvment of multimeric protein complexes in mediatin the capacitation-dependant binding of human spermatozoa to homologous zonae pellucidae. Dev Biol 356:460–474

    Article  PubMed  CAS  Google Scholar 

  • Reger JF, Fain-Maurel MA, Dadoune J-P (1985) A freeze-fracture study on epididymal and ejaculated spermatozoa of the monkey (Macaca fascicularis). J Submicrosc Cytol 17:49–56

    PubMed  CAS  Google Scholar 

  • Retzius G (1909) Spermien der Saugetieren. Biologische untersuchungen., N.F. Bd 14, G. Fischer, Iena pp 133–216

  • Russel L, Peterson RN, Freund M (1980) On the presence of bridges linking the inner and the outer acrosomal membranes of boar spermatozoa. Anat Rec 198:449–459

    Article  Google Scholar 

  • Satouh Y, Inoue N, Ikawa M, Okabe MJ (2012) Visualization of the moment of mouse sperm –egg fusion and dynamic localization of IZUMO1. J Cell Sci 125:4095–4990

    Article  CAS  Google Scholar 

  • Sawada H, Takahashi Y, Fujino J, Flores SY, Yokosawa H (2002) Localization and roles in fertilization of sperm proteasomes in the ascidian Halocynthia roretzi. Mol Reprod Dev 62:271–276

    Article  PubMed  CAS  Google Scholar 

  • Schams-Borhan G, Huneau D, Fléchon J-E (1979) Acrosin does not appear to be bound to the inner acrosomal membrane of bull spermatozoa. J Exp Zool 20(9):143–149

    Article  Google Scholar 

  • Schulte-Wrede S, Wetzstein R (1972) Raster–Elektronmikroscopie von Spermien des Hausschafs (Ovis ammon aries, L). Z Zellforsch Mikrosk Anat 134:105–127

    Article  PubMed  CAS  Google Scholar 

  • Siiteri JE, Dandekar P, Meizel S (1988) Human sperm acrosome reaction initiating activity associated with the human cumulus oophorus and mural granulosa cells. J Exp Zool 246:71–80

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P (2011) Sperm proteasome and fertilization. Reproduction 142:1–14

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Manandhar G, McCauley TC, Caamano JN, Sutovsky M, Thomson WE, Day BN (2004) Proteasomal interference prevent zona pellucida penetration and fertilization in mammals. Biol Reprod 71:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Talbot P, Dicarlentonio G, Zao P, Penkala J, Haimo LT (1985) Motile cells lacking hyaluronidase can penetrate the hamster oocyte cumulus complex. Dev Biol 108:38–98

    Article  Google Scholar 

  • Tesarik J, Fléchon J-E (1986) Distribution of sterols and anionic lipids in human sperm plasma membrane: effect of in vitro capacitation. J Ultrastruct Mol Res 97:227–237

    Article  CAS  Google Scholar 

  • Topfer-Pedersen AE, Friess F, Sinowatz S, Biltz S, Schill WB (1985) Immunocytological characterization of the outer acrosomal membrane (OAM) during acrosome reaction in the boar. Histochemistry 82:113–120

    Article  Google Scholar 

  • Toshimori K, Higashi R, Oura C (1987) Filipin-sterol complexes in golden hamster sperm membranes with special reference to epididymal maturation. Cell Tissue Res 250:673–680

    Article  PubMed  CAS  Google Scholar 

  • Tourmente M, Gomendio M, Roldan ERS (2011) Sperm competition and the evolution of sperm design in mammals. Evol Biol 11:12–22

    Google Scholar 

  • Toyama Y, Nagano T (1988) Maturation changes of the plasma membrane of rat spermatozoa observed by surface replica, rapid-freeze and deep-etch, and freeze-fracture methods. Anat Rec 220:45–50

    Article  Google Scholar 

  • Tsai P-S, Garcia-Gil N, Van Haften T, Gadella BM (2010) How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PLoS ONE 5, e11204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Gestel RA, Brevis LA, Ashton PR, Helms JB, Brouvers JF, Gadella BM (2005) Capacitation -dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod 11:583–590

    Article  PubMed  CAS  Google Scholar 

  • Wassarman PM (2005) Contribution of mouse egg zona pellucida glycoproteins in gamete recognition during fertilization. J Cell Physiol 204:388–391

    Article  PubMed  CAS  Google Scholar 

  • Westbrook-Case VA, Winfrey VP, Olson GE (1994) A domain-specific 50-kilodalton structural protein of the acrosomal matrix is processed and released during the acrosome reaction in the guinea pig. Biol Reprod 51:1–13

    Article  PubMed  CAS  Google Scholar 

  • Wolkowicz MJ, Shetty J, Westbrook A, Klotz K, Jayes F, Mandal A, Flickinger CJ, Herr JC (2003) Equatorial segment protein defines a discrete acrosomal subcompartment persisting through out acrosomal biogenesis. Biol Reprod 69:735–745

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neil JD (eds) The physiology of reproduction, 2nd edn. Raven, New York, pp 189–317

    Google Scholar 

  • Yanagimachi R, Chang MC (1961) Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J Exp Zool 148:158–204

  • Yanagimachi R, Phillips DM (1984) The status of acrosomal caps of hamster spermatozoa immediately before fertilization in vivo. Gamete Res 9:1–19

    Article  Google Scholar 

  • Yanagimachi R, Suzuki F (1985) A further study of the lysolecithin-mediated acrosome reaction of guinea pig spermatozoa. Gamete Res 11:29–40

    Article  Google Scholar 

  • Yi Y-J, Manandhar G, Oko RJ, Breed WG, Sutovsky P (2007a) Mechanism of sperm-zona pellucida penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysine. Soc Reprod Fertil Suppl 63:385–408

    PubMed  CAS  Google Scholar 

  • Yi Y-J, Manandhar G, Sutovsky M, Li R, Jonakova V, Oko R, Park C-S, Prather RS, Sutovsky P (2007b) Ubiquitin C-terminal hydrolase activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol Dev 77:780–793

    CAS  Google Scholar 

  • Yi Y-J, Manandhar G, Sutovsky M, Zimmerman SW, Jonakova V, van Leeuwen FW, Oko R, Park CS, Sutovsky P (2010) Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm–zona pellucida penetration during porcine fertilization. Cell Tissue Res 341:325– 340

  • Yoshida Y, Chiba T, Tokunada F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Ito C, Yamatoa K, Maehkawa M, Toyama YC, Suzuki-Toyota F, Toshimori K (2010) A model of the acrosome progression via the acrosomal membrane-anchored protein equatorin. Reproduction 139:533–544

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Xu W, Y-J YI, Sutovsky P, Oko R (2006) The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38). Dev Biol 290:32–43

    Article  PubMed  CAS  Google Scholar 

  • Yudin AI, Gottlieb W, Meizel S (1988) Ultrastructural study of the early events of the human sperm acrosome reaction as initiated by human follicular fluid. Gamete Res 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Zepeda-Bastida A, Chiquete-Felix N, Uribe-Carvajal S, Mujica A (2011) The acrosomal matrix from guinea pig sperm contains structural proteins, suggesting the presence of an actin skeleton. J Androl 32:411–419

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SW, Manhandar G, Yi Y-I, Gupta SK, Sutovsky M, Odhiambo JF, Powel MD, Miller DJ, Sutovsky P (2011) Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS ONE 6, e17256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

I thank Mike Bedford for his initial help and encouragement, Peter Sutovsky for inviting me to contribute to this special issue and for advice in the elaboration of the manuscript and Ms Kathy Craighead for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques-Edmond Fléchon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fléchon, JE. The acrosome of eutherian mammals. Cell Tissue Res 363, 147–157 (2016). https://doi.org/10.1007/s00441-015-2238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2238-0

Keywords

Navigation