Skip to main content

Advertisement

Log in

On pinned fields, interlacements, and random walk on \(({\mathbb {Z}}/N {\mathbb {Z}})^2\)

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We define two families of Poissonian soups of bidirectional trajectories on \({\mathbb {Z}}^2\), which can be seen to adequately describe the local picture of the trace left by a random walk on the two-dimensional torus \(({\mathbb {Z}}/N {\mathbb {Z}})^2\), started from the uniform distribution, run up to a time of order \((N\log N)^2\) and forced to avoid a fixed point. The local limit of the latter was recently established in Comets et al. (Commun Math Phys 343:129–164, 2016). Our construction proceeds by considering, somewhat in the spirit of statistical mechanics, a sequence of “finite volume” approximations, consisting of random walks avoiding the origin and killed at spatial scale N, either using Dirichlet boundary conditions, or by means of a suitably adjusted mass. By tuning the intensity u of such walks with N, the occupation field can be seen to have a nontrivial limit, corresponding to that of the actual random walk. Our construction thus yields a two-dimensional analogue of the random interlacements model introduced in Sznitman (Ann Math 171(3):2039–2087, 2010) in the transient case. It also links it to the pinned free field in \({\mathbb {Z}}^2\), by means of a (pinned) Ray–Knight type isomorphism theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl. Math. 35(2), 209–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamini, I., Sznitman, A.-S.: Giant component and vacant set for random walk on a discrete torus. J. Eur. Math. Soc. 10(1), 133–172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Černý, J., Teixeira, A.: From random walk trajectories to random interlacements. Ensaios Matemáticos, vol. 23. Sociedade Brasileira de Matemática, Rio de Janeiro (2012)

  4. Černý, J., Teixeira, A.: Random walks on torus and random interlacements: macroscopic coupling and phase transition. Ann. Appl. Probab. 26(5), 2883–2914 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Comets, F., Popov, S.: The vacant set of two-dimensional critical random interlacement is infinite. Ann. Probab. 45(6B), 4752–4785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Comets, F., Popov, S., Vachkovskaia, M.: Two-dimensional random interlacements and late points for random walks. Commun. Math. Phys. 343, 129–164 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. 160, 433–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drewitz, A., Ráth, B., Sapozhnikov, A.: Local percolative properties of the vacant set of random interlacements with small intensity. Ann. Inst. Henri Poincaré Probab. Stat. 50(4), 1165–1197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lawler, G.F.: Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  10. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction, vol. 123. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  11. Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marcus, M.B., Rosen, J.: Markov Processes, Gaussian Processes, and Local Times, volume 100 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2006)

  13. Resnick, S.I.: Extreme values, regular variation, and point processes. Applied Probability, vol. 4. A Series of the Applied Probability Trust. Springer, New York (1987)

  14. Rodriguez, P.-F., Sznitman, A.-S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Spitzer, F.: Principles of Random Walk. Graduate Texts in Mathematics, Vol. 34, 2nd edn. Springer, New York (1976)

  16. Sznitman, A.-S.: Random walks on discrete cylinders and random interlacements. Probab. Theory Relat. Fields 145(1–2), 143–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sznitman, A.-S.: Vacant set of random interlacements and percolation. Ann. Math. 171(3), 2039–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sznitman, A.-S.: Decoupling inequalities and interlacement percolation on \(G\times {\mathbb{Z}}\). Invent. Math. 187(3), 645–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sznitman, A.-S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17(9), 1–9 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Sznitman, A.-S.: On \(({\mathbb{Z}}/N{\mathbb{Z}})^2\)-occupation times, the Gaussian free field, and random interlacements. Bull. Inst. Math. Acad. Sin. (N.S.) 7(4), 565–602 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Sznitman, A.-S.: Random interlacements and the Gaussian free field. Ann. Probab. 40(6), 2400–2438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sznitman, A.-S.: Topics in Occupation Times and Gaussian Free Fields. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zurich (2012)

  23. Teixeira, A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14(54), 1604–1628 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Teixeira, A., Windisch, D.: On the fragmentation of a torus by random walk. Commun. Pure Appl. Math. 64(12), 1599–1646 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Windisch, D.: Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13, 140–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-François Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, PF. On pinned fields, interlacements, and random walk on \(({\mathbb {Z}}/N {\mathbb {Z}})^2\). Probab. Theory Relat. Fields 173, 1265–1299 (2019). https://doi.org/10.1007/s00440-018-0851-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0851-z

Mathematics Subject Classification

Navigation